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COMPUMAG 2003 Chairman’s Welcome

Welcome to COMPUMAG 2003, the 14th Conference on the Computation of Electric
and Magnetic Fields!

In the 27 years since the first COMPUMAG Conference in 1976 at Oxford, we have
seen the society and the conference continue to grow in numbers, in significance and in
international renown and respect. We are honored, therefore, to carry on what has
become a well-established tradition of presenting the leading research and thought in the
area of computational electromagnetics.

Because of its high standards and rigorous review process, the Conference has become the
place to present in our field. This year 429 papers were approved for presentation in 8
oral sessions and 32 poster sessions. The contributors represent 30 different countries.
Our deep thanks go to the editorial board and to the co-chairs Jon Webb and Dennis
Giannacopoulos, who did an outstanding job.

And welcome to Saratoga Springs, New York! Those of us fortunate to live and work in
New York’s Capital District can take advantage of some of the best opportunities in the
United States for research and education; cultural, historical and recreational resources;
and small cities and towns where neighbors still don’t lock their doors. Nearby research
institutions and universities include Rensselaer, GE Global Research Laboratories, Knolls
Atomic Power Laboratory, IBM Research Laboratory and others. New York City,
Boston, and Montreal, with their rich historical and cultural resources, are all within a
few hours’ drive. Finally, there is the peace and friendliness of smaller towns and villages,
like Saratoga Springs, where you are sure to enjoy the activities we have planned; we
hope you will also take time to explore on your own.

COMPUMAG 2003 offers lively scientific exchange to charm the intellect and convivial
activities to warm the heart. Welcome!

Prof. Sheppard J. Salon

COMPUMAG 2003 Chairman
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COMPUMAG 2003 Technical Program 

Monday, July 14, 2003 

8:00 – 10:15 

Oral Session 

Formulations 
Saratoga Ballroom 

10:45 – 12:00 

Poster Session 

Numerical Techniques I: Mesh generation and parallel 
computations

Coupled Problems I: Global coupling; Rigid body kinematics 

Devices I: Biomedical and Biological Applications 

Statics I: Electrostatics 

1:30 – 2:45 

Poster Session 

Optimization I 

Waves I: FDTD and TLM 

Machines I: Linear, SR, SynRel 

Quasistatic I 

3:15 – 5:30 

Oral Session 

Methodologies 
Saratoga Ballroom 



Formulations Chairmen

Monday, July 14, 8:00am - 10:15am Dr. Bill Trowbridge
Prof. Arnulf Kost

The question of forces: Long-standing controversies, modern geometrical
tools I - 2

Alain Bossavit P26X21
EDF
Clamart - France

Working Field Theory Problems with Random Walks I - 4
Kent R. Davey P61208
American Maglev, Inc.
New Smyrna Beach, FL - USA

From thermostatistics to Maxwell equations: A variational approach of
electromagnetism I - 6

Vincent Mazauric P85099
Schneider Electric - Corporate Research and Development
Grenoble - France

Total/Reduced Magnetic Vector Potential and Electrical Scalar Potential
for Eddy Current Calculation I - 8

E.X. Xu, J. Simkin P24580
Vector Fields, Ltd.
Oxford - UK

Subspace Projection Extrapolation Scheme for Transient Field
Simulations I - 10

Markus Clemens, Markus Wilke, Rolf Schuhmann, Thomas Weiland P12022
TU Darmstadt -- FG Theorie Elektromagnetischer Felder
Darmstadt - Germany

Finite Element Difference Schemes for Electro- and Magnetostatics I - 12
Igor Tsukerman P32632
The University of Akron - Department of Electrical and Computer Engineering
Akron, OH - USA

Numerical Techniques I: Mesh generation and parallel
computations Chairman

Monday, July 14, 10:45am - 12:00pm Dr. Ilaria Perugia

Finite Element Basis Functions for Nested Meshes of Non-Uniform
Refinement Level I - 14

Volker Hill, Ortwin Farle, Romanus Dyczij-Edlinger P45795
Universität des Saarlandes - Lehrstuhl für Theoretische Elektrotechnik
Saarbrücken - Germany

Saratoga Springs, New York USA
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Numerical Performance of the Distributed Vector Finite Element Time
Domain Algorithm I - 16

Boguslaw Butrylo, Christian Vollaire, Laurent Nicolas, Alain Nicolas P71263
Ecole Centrale de Lyon - CEGELY
Ecully - France

3-D Finite Element Analysis of Skewed Squirrel-Cage Induction Motor I - 18
Tadashi Yamaguchi, Yoshihiro Kawase, Shinya Sano P31498
Gifu University - Department of Information Science
Gifu - Japan

Adaptive Finite Element Meshing for Eddy Current Analysis of Moving
Conductor I - 20

Katsumi Yamazaki, Shinjiro Watari, Akira Egawa P62316
Chiba Institute of Technology - Dept. of Electrical Engineering
Chiba - Japan

Optimal discretization-based load balancing for parallel adaptive fininte
element electromagnetic analysis I - 22

Dennis Giannacopoulos P42731
McGill University - Electrical & Computer Engineering Dept.
Montreal - Canada

Towards Optimal Mesh Quality Improvements for Adaptive Finite
Element Electromagnetics with Tetrahedra I - 24

Mark Dorica, Dennis Giannacopoulos P62070
McGill University - Electrical & Computer Engineering Dept.
Montreal, - Canada

High Accuracy Torque Calculation for a Rotating Machine Using
Adaptive Meshing I - 26

Masahiko Miwa, David Dibben, Takashi Yamada P73834
The Japan Research Institute, Ltd.
Osaka - Japan

Mesh Generation Based on Machine Learning I - 28
Hajime Igarashi, A. Yamamoto, Toshihisa Honma P53341
Hokkaido University - Graduate School of Eng., System & Information Eng.
Sapporo - Japan

A novel mesh regeneration using structural deformation analysis for 3D
shape optimization of electromagnetic devices I - 30

Yingying Yao, Chang Seop Koh, Dexin Xie P93578
Chungbuk National University - School of Electrical & Computer Engineering
Chungbuk - Korea

Automatic Hexahedral Mesh Generation for Rotating Machine I - 32
Toshihiro Maeda, So Noguchi, Hideo Yamashita P34614
Hiroshima University - Graduate School of Engineering Higashihiroshima - Japan

ixRecord of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Application of Parallelized Multigrid Method to Solution of MHD
Equilibrium with MPI I - 34

Toshihiro Hanawa, Soichiro Ikuno, Atsushi Kamitani P74631
Tokyo University of Technology - Faculty of Engineering
Tokyo - Japan

Improving the bubble meshing technique for remeshing purposes I - 36
Vincent Leconte, Guillaume Lemercier, Vincent Mazauric, Yves Maréchal P55398
Schneider Electric - Centre de Recherche A2
Grenoble - France

Generalized h-p Triangles and Tetrahedra for Adaptive Finite Element
Analysis in Parallel Processing Environments I - 38

Steve McFee, Donglin Ma P16616
McGill University - Electrical & Computer Engineering
Montreal - Canada

Overlapping Elements and Layered Meshes for h-p Adaptive Finite
Element Analysis I - 40

Steve McFee, Donglin Ma P56718
McGill University - Electrical & Computer Engineering
Montreal - Canada

Practical h-p Adaptive Finite Element Analysis Strategies for Irregular
Triangles and Tetrahedra I - 42

Steve McFee, Donglin Ma P46519
McGill University - Electrical & Computer Engineering
Montreal - Canada

Coupled Problems I: Global Coupling, Rigid Body Kinematics Chairman
Monday, July 14, 10:45am - 12:00pm Saku Suuriniemi

Different Finite Element Approaches for Electromechanical Dynamics I - 44
O. Bottauscio, A. Manzin, M. Chiampi P81129
Istituto Elettrotecnico Nazionale Galileo Ferraris
Torino - Italy

Finite Element Computation of Nonlinear Magnetic Diffusion and its
Effects when Coupled to Electrical, Mechanical, and Hydraulic Systems I - 46

J.R. Brauer, Isaak D. Mayergoyz P71432
Ansoft Corporation
Pittsburgh, PA - USA

Harmonic weighting functions at the sliding interface of a finite element
machine model incorporating angular displacement I - 48

Herbert De Gersem, Thomas Weiland P91251
Technische Universität Darmstadt - Theorie Elektromagnetischer Felder
Darmstadt - Germany

Saratoga Springs, New York USA
July 13 - 17, 2003
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Numerical Analysis of the Eddy Current on Moving Conductor Problems I - 50
Huijuan Zhang, Weili Yan, Yanting Wang P91083
Hebei University of Technology - Dept.of Electrical Engineering
Tianjin - China

3D Multiply Connected Magnetic Circuits, Solid Conductors and Electric
Circuits Coupling Formulations I - 52

Yann Le Floch, Gérard Meunier, Christophe Guérin, Patrice Labie, Xavier
Brunotte P32448
Cedrat
Meylan - France

Using High Order Finite Elements in Problems with Movement I - 54
O.J. Antunes, J.P.A. Bastos, N. Sadowski P43771
GRUCAD/EEL/CTC/UFSC
Florianópolis - Brazil

Weighted-residual finite element mesh coupling I - 56
Enrique Melgoza, Rafael Escarela-Perez, Marco Arjona P23783
Instituto Tecnologico de Morelia
Morelia - Mexico

A 3D Overlapping Finite Element scheme for modelling movement I - 58
H.C. Lai, D. Rodger P65725
University of Bath - Department of Electronic and Electrical Engineering
Bath - UK

Devices I: Biomedical and Biological Applications Chairman
Monday, July 14, 10:45am - 12:00pm Dr. Frederic Bouillault

Computation of the induced Current Density into the Human Body due to
LF Magnetic Field generated by Realistic Devices I - 60

R. Scorretti, Noël Burais, O. Fabrègue, Alain Nicolas, Laurent Nicolas P91059
Ecole Centrale de Lyon - CEGELY
Ecully - France

Classify the Multiplicity of the EEG Sources Using Support Vector
Machines I - 62

Qing Wu, Xueqin Shen, Weili Yan P73515
Hebei University of Technology
Tianjin - China

Real Field Simulating and Passive Shimming of a Permanent magnet for
MRI I - 64

Dexin Xie, Xianjing Sun, Pingchou Xia, Yingying Yao P83438
Shenyang University of Technology - School of Electrical Engineering
Shenyang - China

xiRecord of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Novel Multi-dipole Searching Technique for MEG Source Localization I - 66
Kwang-Ok An, Chang-Hwan Im, Hyun-Kyo Jung, Hyuk-Chan Kwon, Yong-
Ho Lee P63139
National University - School of Electrical Engineering
Seoul - Korea

Information content in single component versus three components
cardiomagnetic fields I - 68

Cesare Mario Arturi, Luca Di Rienzo, Jens Haueisen P63457
Politecnico di Milano - Dipartimento di Elettrotecnica
Milano - Italy

The Electrical Properties of Real Head Model Based on Electrical
Impedance Tomography (EIT) I - 70

Guizhi Xu, Qingxin Yang, Ying Li, Qing Wu, Weili Yan P54215
0DHebei University of Technology
Tianjin - China

Numerical Simulation of Electric and Magnetic Brain Stimulation I - 72
Jacek Starzy ski, Bartosz Sawicki, Robert Szmur o, Stanis aw Wincenciak,
Andrzej Krawczyk, Tomasz Zyss P25405
IETiME PW
Warsaw - Poland

Spatiotemporal Source Imaging of Brain Magnetic Fields Associated with
Short-term Memory by Linear and Nonlinear Optimization Methods I - 74

Seiji Nakagawa, Toshiaki Imada, Shoogo Ueno, Mitsuo Tonoike P65859
National Institute of Advanced Industrial Science and Technology (AIST) - Life Electronics
Lab
Osaka - Japan

Shape Optimization of Cochlear Implant Electrode Array using Genetic
Algorithms and Computational Neuroscience models I - 76

Charles T.M. Choi P66405
I-Shou University - Department of Electrical Engineering
Kaohsiung - Taiwan, ROC

Large-Domain Approach to Electrical Impedance Tomography: 1-D
Analysis I - 78

Milica Popovi , Branko Popovi P76706
McGill University -Department of Electrical and Computer Engineering
Montreal, Quebec - Canada

Simulation of Eddy Currents in Biomedical Applications I - 80
K. Hollaus, Christian Magele, R. Merwa, H. Scharfetter P26311
Graz University of Technology - IGTE
Graz - Austria

Saratoga Springs, New York USA
July 13 - 17, 2003
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Statics I: Electrostatics Chairmen

Monday, July 14, 10:45am - 12:00pm Dr. Dave Rodger
Dr. Zoran Andjelic

Trim Simulations of Thin Film Resistors by the Boundary Element
Method I - 82

Klaus Schimmanz, Arnulf Kost P71012
Technical University Cottbus - Fakulty 1
Cottbus - Germany

An Efficient Algorithm for Cutting Multiply Connected Regions I - 84
J. Simkin, S.C. Taylor, E.X. Xu P31827
Vector Fields, Ltd.
Oxford - England

Analysis of Grounding Systems in Multi-layer Soil with Finite Volumes of
Different Resistivities by Using the Electromagnetic Method I - 86

Zhibin Zhao, Xiang Cui, Lin Li, Bo Zhang P41387
North China Electric Power University - Department of Electrical Engineering
Hebei - China

Numerical Simulation of Charge Relaxation in Low Conductivity Fluids
Stored in Cylindrical Tanks I - 88

Kazimierz Adamiak P62425
University of Western Ontario - Dept. of Electrical and Computer Eng.
London - Canada

A different approach to BEM by means of a harmonic function basis I - 90
Mircea Cehan-Racovita P92553
Advanced Research Institute for Electrical Engineering
Bucharest - Romania

Analysis of Three Dimensional Electrical Field of High Voltage
Interrupter by Virtual Boundary Element Method I - 92

Rui Min Tao, Erzhi Wang, Pei Pei Li P92478
Shenyang University of Technology - School of Electric Engineering
Shenyang - China

Application of Multiple Grid Methodin Electric Field Calculation of High
Voltage Interrupter I - 94

Li Li, Erzhi Wang P12584
Shenyang University of Technology - School of Electric Engineering
Shenyang - China

Benchmark for Computation of Electric Field with Charge Simulation
Method I - 96

K. Palaniswamy, K. Udayakumar P22188
Anna University - High Voltage Division(SEEE),
Chennai - India

xiiiRecord of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Analysis of Large Grounding Grid with Two-end Grounded Cables by
the Method of Coupling Electromagnetic Field with Circuit Equations I - 98

Bo Zhang, Xiang Cui, Lin Li, Zhibin Zhao P63691
North China Electric Power University - Department of Electrical Engineering
Hebei - China

Multigrid Algorithms for the Fast Calculation of Space-Charge Effects in
Accelerator Design I - 100

Gisela Pöplau, Ursula van Rienen, Bas van der Geer, Marieke de Loos P64516
Universität Rostock -- FB Elektrotechnik und Informationstechnik
Rostock - Germany

MV line electric field evaluation near a concrete pole I - 102
D. Desideri, M. Guarnieri, E. Poli P64827
University of Padova - Department of Electrical Engineering
Padova - Italy

Electrostatic Finite Element Modelling of a Silicon Diode I - 104
A.R. Masidlover, A.A.P. Gibson P94233
UMIST - Electromagnetics Centre
Manchester - United Kingdom

3D Capacitance Extraction of IC Interconnects Using Field Solvers and
Homogenization Technique I - 106

Z. Ren, C. Lage P25304
Cadence Design Systems, Inc.
San Jose, CA - USA

Worst-case tolerance analysis in static field problems I - 108
L. Egiziano, G. Spagnuolo, M. Vitelli P15306
Università di Salerno - DIIIE
Fisciano - Italy

Electrostatic Imaging Via Conformal Mapping I - 110
Ibrahim Akduman P75588
Istanbul Technical University - Electrical and Electronics Engineering Faculty
Istanbul - Turkey

Optimization I Chairmen

Monday, July 14, 1:30pm - 2:45pm Dr. Xiang Cui
Dr. Kay Hameyer

Source Region Contracting Method for EEG Source Reconstructions I - 112
J. Zou, Y.Q. Xie, J.S. Yuan, X.S. Ma, Xiang Cui P42840
Tsinghua University - Department of Electrical Engineering
Beijing - China

Saratoga Springs, New York USA
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Estimation of Multi-Layer Earth Structure by Using Complex Image
Method I - 114

Bo Zhang, Xiang Cui, Lin Li P51889
North China Electric Power University - Department of Electrical Engineering
Hebei - China

A New Respond Surface Model for Reducing the Excessive Computations
of Inverse Problems Using Improved Compactly supported Radial Basis
Function

I - 116

S.L. Ho, Shiyou Yang, Guangzheng Ni, H.C. Wong P71743
Hong Kong Polytechnic University - Dept. of Electrical Engineering
Kowloon - Hong Kong

Two-Stage Algorithm for Inverting Structure Parameters of the
Horizontal Multi-layer Soil I - 118

J. Zou, J.L. He, R. Zeng, W.M. Sun, G. Yu P71255
Tsinghua University - Department of Electrical Engineering
Beijing - China

Inverse problem for magnetic sensors based on a Preisach formalism I - 120
L. Dupré, M. Slodicka P11686
Ghent University - Department of Electrical Energy, Systems and Automation
Gent - Belgium

Optimization Design on Electrode Contour Based on Novel Hybrid
Algorithm I - 122

Yundong Cao, Xiaoming Liu, Chunguang Hou, Changxue Lai, Erzhi Wang P72179
Shenyang University of Technology - College of Electrical Engineering
Shenyang - China

Electrical Impedance Imaging of Two-Phase Fields with an Adaptive
Mesh Grouping Technique I - 124

S. Kim, K.Y. Kim, S.I. Kang, B.S. Kim, M.C. Kim, Y.J. Lee, H.J. Jeon, B.Y.
Choi, M. Vauhkonen P13627
Cheju National University - Department of Electrical and Electronic Engineering
Cheju City - South Korea

Magnetostatic Permeability Tomography I - 126
Hajime Igarashi, K. Ooi, Toshihisa Honma P43142
Hokkaido University - Graduate School of Eng.,
System & Information Eng.
Sapporo - Japan

Reconstruction of Transient Currents from Magnetic Data: Inverse
Problem Formulation Employing High Order Surface Impedance
Boundary Conditions

I - 128

Cesare Mario Arturi, Luca Di Rienzo, Nathan Ida, Sergey Yuferev P23254
Politecnico di Milano - Dipartimento di Elettrotecnica
Milano - Italy
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Three-dimensional defect localization from time-of-flight/eddy current
testing data I - 130

A. Tamburrino, R. Fresa, S.S. Udpa, Y. Tian P94173
Università di Cassino - DAEIMI
Cassino - Italy

A novel Ray Tracing Procedure for the Localization of EM Field Sources
in Urban Environment I - 132

Salvatore Coco, Antonio Laudani, Letizia Mazzurco P55053
University of Catania - DIEES
Catania - Italy

Some Considerations on the Regularization of Inverse Magnetostatic
Problems I - 134

A. Formisano, R. Martone P35763
S.U.N. - Dip. Ignegneria dell'Informazione
Aversa - Italy

On the Reconstruction of Inhomogeneous Surface Impedance of
Cylindirical Bodies I - 136

Hülya ahintürk P95089
Technical University of Yildiz - Department of Mathematical Engineering
Istanbul - Turkey

An Improved Tabu Based Vector Optimal Algorithm for Design
Optimizations of Electromagnetic Devices I - 138

Shiyou Yang, José Roberto Cardoso, Peihong Ni, S.L. Ho P76009
Zhejiang University - Electrical Engineering College
Hangzhou - China

Reconstruction of the Complex Conductivity Distribution in 3D I - 140
K. Hollaus, Christian Magele P76310
Graz University of Technology - IGTE
Graz - Austria

Waves I: FDTD and TLM Chairman
Monday, July 14, 1:30pm - 2:45pm Dr. Milica Popovic

Design and Analysis of Planar Printed Microwave Filters using FDTD
Method in Conjunction with an Unsplit-Anisotropic Perfectly Matched
Layer Technique

I - 142

Ming-Sze Tong, Yilong Lu, Yinchao Chen, Viktor Krozer P21417
Nanyang Technological University - School of EEE
Singapore

The Non-Standard FDTD Method using Complex Formulation I - 144
Kenji Taguchi, Tadao Ohtani, Tatsuya Kashiwa, Yasushi Kanai P51436
Niigata Institute of Technology - Deparment of Information and Electronics Eng.
Kashiwazaki - Japan
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A Dispersion-Reduction Scheme for the Higher-Order (2,4) FDTD
Method I - 146

Theodoros T. Zygiridis, Theodoros D. Tsiboukis P82237
Aristotle University of Thessaloniki - Dept. of Electrical and Computer Engineering
Thessaloniki - Greece

An Unconditionally Stable Higher-Order ADI-FDTD Technique for the
Dispersionless Analysis of Generalized 3-D EMC Structures I - 148

Nikolaos V. Kantartzis, Theodoros T. Zygiridis, Theodoros D. Tsiboukis P22038
Aristotle University of Thessaloniki - Dept. of Electrical and Computer Engineering
Thessaloniki - Greece

FDTD Analysis of Microstrip Patch Antennas and Arrays on High
Dielectric-Constant Substrate Surrounded by a Soft-and-Hard Surface I - 150

R.L. Li, E.M. Tentzeris, J. Laskar, J. Papapolymerou P42655
Georgia Institute of Technology - School of Electrical and Computer Engineering
Atlanta, GA - USA

Grid-Dispersion Error Reduction for Broadband FDTD Electromagnetic
Simulations I - 152

Shumin Wang, Fernando L. Teixeira P23718
The Ohio State University - ElectroScience Laboratory
Columbus, OH - USA

FDTD Simulation of MWD Electromagnetic Tools in Large-Contrast
Geophysical Formations I - 154

Yik-Kiong Hue, Fernando L. Teixeira P63719
The Ohio State University
ElectroScience Laboratory
Columbus, OH - USA

FDTD-Macromodeling Technique For Simulation of Electromagnetic
Interference at High-Speed Interconnects I - 156

Erping Li, En-Xiao Liu, Le-Wei Li P53745
Institute of High Performance Computing
Singapore

Wave propagation schemes and space-fillers I - 158
Emmi Koljonen, Janne Keranen, Lauri Kettunen P54466
Tampere University of Technology - Institute of Electromagnetics
Tampere - Finland

Transient Modal Analysis of Quasi-Implicit FDTD Schemes I - 160
Rolf Schuhmann, Thomas Weiland P74395
Technische Universität Darmstadt - TEMF
Darmstadt - Germany
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Path Loss Prediction Model for Indoor Wireless Communication using
TLM Method I - 162

A.D. Rosa, H. Domínguez, Adroaldo Raizer P25656
GEMCO/EEL/CTC/UFSC, C.P. 476
Florianópolis - Brazil

Machines I: Linear, SR, SynRel Chairman
Monday, July 14, 1:30pm - 2:45pm Dr. Tan H. Pham

Prediction of Torque Characteristic on Barrier Type SRM Using
Stochastic Response Surface Methodology Combined with Moving Least
Square

I - 164

Young-Kyoun Kim, Geun-Ho Lee, Jung-Pyo Hong, Jin Hur P32943
Changwon National University - Dept. of Electrical Engineering
Kyungnam - Korea

Loss Analysis and Efficiency Evaluations of Synchronous Reluctance
Motor Using Coupled FEM & Preisach Modelling I - 166

Jung Ho Lee, Min Myung Lee, Eun Woong Lee P42394
National University - Dept. of Electrical Engineering
Daejeon - Korea

A Novel Stator Design of Synchronous Reluctance Motor by Loss &
Efficiency Evaluations Related to Slot Numbers using Coupled Preisach
Model & FEM

I - 168

Jung Ho Lee, Min Myung Lee, Eun Woong Lee P12895
Hanbat National University - Dept. of Electrical Engineering
Daejeon - Korea

Static Characteristics of Linear BLDC Motor using Equivalent Magnetic
Circuit and Finite Element Method I - 170

J.P. Hong, J.K. Kim, S.W. Joo, Sung-Chin Hahn, D.H. Kang, D.H. Koo P33799
Dong-A University - Dept. of Electrical Engineering
Busan - Korea

Design of Slotless Type PMLSM for High Power Density using Divided
PM I - 172

Mi-Yong Kim, Yong-Chul Kim, Gyu-Tak Kim P44451
Changwon National University - Dept. of Electrical Engineering
Kyungnam - Korea

Minimization of Detent Force for PMLSM using the Moving Model Node
Technique and the Neural Network I - 174

Dong-Yeup Lee, Ki-Chae Lim, Gyu-Tak Kim P24152
Changwon National University - Dept. of Electrical Engineering
Kyungnam - Korea
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The Optimum Design of Slotless Type PMLSM using Neural-Network I - 176
Jae-Yun Moon, Dong-yeup Lee, Gyu-Tak Kim P24572
Changwon National University - Dept. of Electrical Engineering
Kyungnam - Korea

A Self-training Numerical Method to Calculate the magnetic
characteristics for switched reluctance motor drives I - 178

X.D. Xue, K.W.E. Cheng, S.L. Ho P24875
Hong Kong Polytechnic University - Department of Electrical Engineering
Kowloon - Hong Kong

Size Optimization of Steel-Cored PMLSM Aimed for Rapid and Smooth
Driving on Short Reciprocating Trajectory by using Auto-Tuning Niching
Genetic Algorithm

I - 180

Sang-Yong Jung, Jae-Kwang Kim, Hyun-Kyo Jung, Cheol-Gyun Lee P65152
Seoul National University - School of Electrical Engineering
Seoul - Korea

New Rotor Shape Design for Minimum Torque Ripple of SRM using
FEM I - 182

H.S. Kim, J.W. Lee, B.I. Kwon, B.T. Kim P65160
Hanyang University - Energe Conversion System Lab.
Ansan - South Korea

3D approaches to determine the end winding inductances of a PMLSM I - 184
A. Tounzi, T. Henneron, Y. Le Menach, R. Askour, E. Dumetz, Francis Piriou P75764
USTL - L2EP
Villeneuve d'Ascq - FRANCE

Quasistatic I Chairman
Monday, July 14, 1:30pm - 2:45pm Dr. Virgiliu Fireteanu

Field and Circuit Approaches for Diffusion Phenomena in Magnetic
Cores I - 186

O. Bottauscio, A. Manzin, A. Canova, M. Chiampi, G. Gruosso, M. Repetto P91026
Politecnico di Torino - Dipartimento Ingegneria Elettrica Industriale
Torino - Italy

Regularization on Ill-posed Source Terms in FEM Computation Using
Two Magnetic Vector Potentials I - 188

Akihisa Kameari P72146
Science Solutions International Lab., Inc.
Tokyo - Japan

3D Eddy Current Analysis with the Cell Method for NDE Problems I - 190
Francesco Trevisan P82050
Università di Udine - Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica
Udine – Italy
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A Dynamic Core Loss Model for Soft Ferromagnetic and Power Ferrite
Materials in Transient Finite Element Analysis I - 192

D. Lin, P. Zhou, W.N. Fu, Zsolt Badics, Zoltan J. Cendes P82092
Ansoft Corporation
Pittsburgh, PA - USA

Reducing the Computation Time of Non-Linear Problems by an Adaptive
Linear System Tolerance I - 194

Hans Vande Sande, W. Deprez, J. Decoster, François Henrotte, Kay Hameyer P53651
KULeuven - Dept. ESAT, Div. ELECTA
Leuven-Heverlee - Belgium

Influence of Nonlinear Hysteretic Inductance on the behaviour of Electric
Circuit I - 196

P.I. Koltermann, V.M. Pereira, J.M. Ortega, L.A. Righi P74245
Universidade Federal de Mato Grosso do Sul - UFMS
Campo Grande - Brazil

TEQSAS - Transient Electro-Quasi-Statics Adaptive Simulation –
Schemes I - 198

Markus Clemens, Herbert De Gersem, Wigand Koch, Markus Wilke, Thomas
Weiland P34168
TU Darmstadt - FG Theorie Elektromagnetischer Felder
Darmstadt - Germany

2D Electric Field Computation in HV Insulation Using Non Linear Semi
Conducting Material by Coupling BEMTD and FEMTD. I - 200

T. Toledo, F. Buret, João A. De Vasconcelos, Laurent Krähenbühl P25615
Ecole Centrale de Lyon - CEGELY
Ecully – France

Magnetic Field Analysis of Ferrite Core Considering Frequency
Dependence of Complex Permeability I - 202

Masato Enokizono, Takuji Kawashima P85319
Oita University - Factory of Engineering, Department of Electrical and Electric Engineering
Oita – Japan

Time Domain Analysis of Quasi-static Electric Fields in Media with
Frequency Dependent Permittivity I - 204

K. Preis, Oszkár Bíró, P. Supancic, I. Ti ar P45870
Technische Universität Graz - Institut für Grundlagen und Theorie der Elektrotechnik
Graz – Austria

3D Finite Element modelling of micro-inductors I - 206
M. Bensetti, Y. Le Bihan, C. Marchand, E. Dufour Gergam, J.-P. Gilles, C.-M.
Tassetti, G. Lissorgues P25890
LGEP- SUPELEC
Gif Sur Yvette - France
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Modeling of 3D Stranded Inductors with the Magnetic Vector Potential
Formulation and Spatially Dependent Turn Voltages of Reduced Support I - 208

Patrick Dular, Johan Gyselinck P35494
University of Liège - ELAP
Liège – Belgium

The Hybrid Scalar and Vector Potential Formulationfor Magnetic Field
Computations by means of the FE Method I - 210

Johan Gyselinck, Patrick Dular, Lieven Vandevelde, C. Geuzaine P25496
University of Liège - Department of Applied Electricity
Liège – Belgium

Methodologies Chairman
Monday, July 14, 3:15pm - 5:30pm Prof. Norio Takahashi

Parallel and Distributed Processing for h-p Adaptive Finite Element
Analysis: A Comparison of Simulated and Empirical Studies I - 212

Steve McFee, Qingying Wu, Dennis Giannacopoulos P66817
McGill University -- Electrical & Computer Engineering
Montreal - Canada

An O(N3/2) Integral Equation Method for Solving PEC Scattering
Problems I - 214

Seung Mo Seo, Jin-Fa Lee P72508
The Ohio State University - Dept. of Electrical Engineering, ElectroScience Lab.
Columbus, OH - USA

Detection of State Variables for Coupled Circuit-Field Problems I - 216
Saku Suuriniemi, Jari Kangas, Lauri Kettunen P93032
Tampere University of Technology - Institute of Electromagnetics
Tampere - Finland

A Neural Network Approach for the Differentiation of Numerical
Solutions of 3D Electromagnetic Problems I - 218

G. Capizzi, Salvatore Coco, C. Giuffrida, Antonio Laudani P35823
University of Catania - DIEES
Catania - Italy

On the Convergence of Transient Eddy-Current Problems I - 220
B. Weiß, Oszkár Bíró P25462
University of Technology, Graz - IGTE
Graz - Austria

Using Filters to Design Absorbing Boundary Conditions for High-Order
CEM I - 222

Michael D. White, Miguel R. Visbal P46014
Air Force Research Laboratory - AFRL/VAAC
WPAFB, OH - USA
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The question of forces:
Long-standing controversies, modern geometrical tools

Alain Bossavit†

†LGEP, 11 Rue Joliot-Curie, 91192 Gif-sur-Yvette CEDEX, France

Abstract—An introduction to the Lie derivative, a standard concept in
differential geometry, here seen as a tool for force computation in
electro-magneto-mechanical problems.

Attending all Compumag conferences so far was a pleasurable
experience, but doesn't qualify one to reminisce on this series
of events with anything even remotely like thoroughness,
balance, and accuracy.  Asked to give a historical twist to the
present contribution, I will evoke only one of the trends that
can be discerned in our multi-faceted activity:  the geometrization
of its underlying theory, which now-predictible advances on
the question of forces should confirm in the future.

The saga of edge elements is a case in point:  first seen as
a rather exotic brand of finite elements ("mixed" ones, we said
at the time, with telltaling obscurity), they came to be recognized
as the natural finite elements for the kind of fields they were
meant to approximate, namely, differential forms.  Just as
classical scalar elements are barycentric coordinates of points,
with respect to mesh-nodes of a mesh, edge elements can be
seen as barycentric coordinates for segments, with respect to
mesh-edges.  In both cases, one approximates a differential
form (DF) of degree  p, with  p = 0  and  p = 1  respectively,
thanks to degrees of freedom (DoF) assigned to mesh-elements
of dimension  p.

More recently, efforts to bridge the gap between "variational",
finite-element based, methods, and modern avatars of
FDTD—quite efficient, and apparently free of any references
to approximants—such as FIT and the "cell method", led
some of us to investigate how the Hodge operators, and

, relate with the constitutive coefficients thus usually denoted.
Whether the gap is now bridged is an open question, but that
a debate on such computational issues took place within a
differential geometric arena is something that was hardly
predictable 25 years ago.  Yet, it's in tune with the evolution
of contemporary physics, including computational physics, in
the direction of increasing geometrization.

This being considered, one can justifiably wonder whether
differential geometry cannot be mined further for other useful
tools.  The Lie derivative, as we shall see here, is one,
relevant to the vast application field of force computations.
The Lie derivative of a tensor (and more generally, of a vaster
class of geometric objects), with respect to a given vector
field  v, is the rate of variation of this object as convected by
v.  The "object", there, can be the density of magnetic
(co-)energy, hence the connexion with the virtual work principle.

This will be explained below, along with suggestions on how
a specific calculus can be developed on this basis.  It's not
taking a big risk to predict that we shall see more and more of
such calculations in the future [4, 5]:  expanding fields of
applied research such as micro-motors, magnetostriction, etc.,
whose modelling involves coupled problems, will require them.

FLOWS, LIE DRAGGING, LIE DERIVATIVE

The right approach to forces, in numerical work inclusively
[3], is via the virtual power principle:  Force is the dual
object  f  in a duality bracket  <f ; v>, where the primal
object  v  is virtual displacement, the real value of the bracket
being virtual power.  Here, we are after the force density field
inside a massive body, so  v  must be a vector field (independent
of time).  By solving the differential equation  dty = u(y)  with
initial condition  y(0) = x, one finds a curve  t ut(x)  which
can be interpreted as the trajectory of a particle sitting at  x  at
time  0, and dragged along by the flow the velocity field of
which is  v.  This word, flow (of  v), is used to refer to the
t-indexed family of mappings  u t, from Euclidean space  E3

into itself, thus obtained.  Now, if  R  is the region occupied
by some body  B  at time  0, the set  u t(R) = {u t(x) : x  R}
of images of points of  R  via  ut can be considered as the
result of dragging (and hence, deforming)  B  by the flow of  v
from time  0  to t.  The concept of dragging applies to many
kinds of such "bodies", not only 3D regions, but lines, surfaces,
etc.  In particular, a pair of nearby points  {x, y}  is dragged
onto another pair  {u t(x), ut(y)}, and by letting  y  tend to  x,
we find what it means to drag a vector anchored at  x:  the
flow "convects" it to another vector, anchored at  ut(x), tradi-
tionally denoted by  (ut)* , and computable from the derivative
of  ut  (the so-called "tangent map") in an obvious way.

Now (as an example, but the generalization to all kinds of
DFs should be obvious), let's consider a 2-form such as  b,
magnetic induction, that is to say, the map that assigns to
any oriented surface  S  the magnetic flux  S b  embraced by
this surface.  (We rather denote this flux  S ; b , here, for
merely typographical reasons.)  To avoid confusion between
the above parameter  t  and actual time, let's assume,
provisionally, that  b  is stationary.  Now imagine surface  S
as made of material particles that are dragged along, and measure
the flux embraced by this moving "material surface", that is
to say,  ut(S) ; b , as time goes on.  The Lie derivative of  b,
a 2-form like  b  itself, denoted  Lvb, is by definition the map
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S limt = 0 t
–1 [ ut(S) ; b – S ; b ], that is to say, the

assignment to  S  of the rate of change of the measured flux.
An alternative definition, once defined the pull-back  ut*b  of
b, that is to say, the 2-form  S ut(S) ; b is this:  Lvb =
lim t = 0 [ut*b – b]/ t.  Both definitions are more precise, but
somewhat less illuminating, than the following graphical
description:  The Lie derivative  of a field is its rate of variation
as perceived by an observer who moves with the flow .  (Now,
if  b  depends on time, this variation is  tb + Lvb.)  Beyond
differential forms, the Lie derivative acts on all kinds of
tensorial objects, and in particular, on the Hodge operator:
Setting u such that uu* = u* (same thing with   and

), the Lie derivative of u  is

(1) lim t = 0 [ u(t) – ]/t = Lv – Lv

(read this as applied, from the left, to a  2-form  b), one of a
handful of useful formulas, among which Cartan's "magic
formula",  Lv = ivd + di v  (here a consequence of the definition),
and integration-by-parts tricks like Lvb h = – b Lvh.
Such formulas require some familiarization, but one can at all
times revert to vector formalism, thanks to a small lexicon of
correspondences (where ~ stands for "is the proxy of"):  If  B ~
b, then  B v ~ ivb,  div B ~ db;  If  H ~ h, then  rot H ~ dh,
v · H = i vh;  Hence the respective proxies of  Lvh  and  Lvb:
rot H v + grad(v · H)  and  v div B + rot(B v).

To this "continuous" calculus corresponds a "discrete" one,
based (in addition to the usual ingredients, primal and dual
mesh, incidence matrices, discrete Hodge operators) on a specific
discretization of the so-called "inner product"  ivb.  Details
will be given in the full-length paper (but see [2]).

COMPUTING FORCES

To give the flavor of computations using this toolbox, let's
consider the case of moving conductors, with = 0 all
over.  From the equations, which in Lagrangian form (i.e., in
a comoving frame) are tb + de = 0,  h = ub,  dh = u e + js,
one first derives, denoting by (u, b) = 1/2 ub b  the
magnetic energy,

dt[ (u(t), b(t))] + u e e +  js e = – < u (u, b) ; v>,

or in words,  <rate of increase of magnetic energy> + <Joule
losses> + <fed-in power> = <work exerted on outside world>
(i.e., virtual power), which shows that the force field is the
mapping  v – u (u, b)  at  u = u0 (the reference
configuration).  By (1), – u (u, b) = 1/2 ( Lv – Lv )b b
Lvb h = ivb dh = ivb j, that is, in terms of proxies,
J B · v, the expected formula.  (On how to derive the term

– 1/2 |H|2 grad , which appears when 0, see [1].)

Next, we shall investigate the question of forces inside a
permanent magnet, long considered a controversial puzzle, and
solve it in a perhaps unexpected manner:  It all depends on
what "permanent" means, for this word can be understood in
two different ways, both natural, depending on whether

magnetization is handled as a 1-form or a 2-form in formulas.
One may write (still, in the Lagrangian setup), either

(2) (i)    b = u h + br or     (ii)   b = u (h + hc),

where the 2- and 1-form  br and  hc are constant, whatever
the deformation.  Both laws are realistic:  By immersing a lot
of microscopic hard magnets in a flexible material (some kind
of putty, say), one gets a composite with "constant"  br (at
mesoscopic scale), because the flux due to  br embraced by a
fixed material surface is constant in time.  On the other hand,
a sprinkling of small coils bearing permanent currents
(superconductive coils, say), will give a constant  hc  (unchanged
Amperian intensity through a material surface).  The magnetic
energy in cases (2-i) and (2-ii) is, respectively,

(3-i) (u, b) = 1/2 ub (b – 2br),

(3-ii) (u, b) = 1/2 ub b – b  hc,

and obviously, differentiation with respect to  u  will give
different results.  All computations wrapped up, and introducing
the proxies  Hc ~ hc  and  Br ~ br, one finds as force field

(4-i) f = J B – (J + Jc)  Br – (H + Hc) div Br,

(4-ii) f = (J + Jc)  B

respectively, where  Hc in (4-i) is defined as  Hr = 0Br, with
Jc = rot Hc in both cases.

That results diverge this way should not be felt as a
paradox, in spite of the fact that (2-i) and (2-ii), expressed in
terms of proxies, do coincide when  u = u 0:  B = 0H + Br

0(H + Hc).  These constitutive laws differ, since  b r constant
and  hc = u br imply  hc not constant, and the other way
round.  In coupled magnetomechanical problems, more
generally, it's the dependence of the pair  h–   ( for stress,
there) on the pair  b–  ( for strain) that makes the overall
constitutive law, so even if one does not address the problem
of computing the deformation, knowing how  h  depends on
b and on (hence, on  u) is a prerequisiste to applying the
virtual power principle.  Distinct laws, as in (2), yield distinct
force fields.  A review of the history of force computations in
the Compumag record will show that contradictions and
controversies in this matter stemmed from imprecise specifica-
tion of behavior laws.  The role geometry can play, and will
play more and more, is to provide this needed definiteness.
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Fig. 1 The field point potential is related to the perimeter potentials through

the angle subtended. 

Working Field Theory Problems with Random Walks

Kent R. Davey
American Maglev, Inc, 2275 Turnbull Bay Rd., New Smyrna Beach, FL 32168-5941, USA

Abstract - The point solution of any Laplacian field problem can be

viewed as the solid angle average of the derichlet potentials from

that point.  Alternatively it can be viewed as the average of the

termination potential of a number of random walks.  Poisson and

Helmholtz equations add the complexity of collecting a number of

packets along this walk. This paper generalizes the Monte Carlo

theory to all classes of field theory problems, including velocity

based eddy current problems, which have never been examined in

this manner. The exercise is not merely pedagogical since this non

standard approach lends itself quickly to parallel process coding.

Index terms - Parallel processing, Random numbers, Finite

Difference

I. INTRODUCTION

Finite element and boundary element methods now

dominate the industry as the methods of choice for solving field

theory problems. Monte Carlo methods were introduced over 58

years ago [1], but still await the strong advent of parallel

processing computers before they will be competitive with the

more classical direct methods. This paper discusses a different

way of approaching field theory problems, the bulk of which

depends on random numbers. The work has three motivations.

1. To discuss an analysis approach which lends itself to what

will undoubtedly be the trend in computers - parallel

processing. There are some fundamental barriers to

increasing the processor speed, but seemingly less so to the

number of parallel processors. 

2. To offer a method that gives the field theoretician yet

another way of thinking about a field problem, hopefully

one that will add to additional intuitive insight into their

expected solutions. 

3. To generalize the theory to a broad class of field theory

problems. In researching the subject in the IEEE database,

it seems that only one paper discussed application of the

technique to eddy current problems [2], and none have

attempted to generalize the theory to eddy problems with

motion.

The number of papers discussing the use of the Monte

Carlo method in the actual calculation of electric and magnetic

fields are few. Micu [3]discusses a simple application of the

method to electrostatic problems, and Mandayam, et.al, [4]

discuss its application to a magnetostatic problem.  Sadiku [5]

paper that discuss it under the variant of the fixed aleatory route.

The three classes of problems to be discussed are

Laplacian, Poisson, and Helmholtz. These universal

formulations have not been worked out before especially for

generalized eddy problems involving velocity. A universal

formulation to any 3D problem will be presented for the

Laplacian problem. Then the formulation of Poisson and

Helmholtz problems will be presented. These formulations

remain the same regardless of the dimensionality of the

problem. Given that working hypothesis, specific examples will

focus on one dimensional problems for the second two classes

of problems. 

II. LAPLACIAN PROBLEMS

The problem 

(1)

has been considered in [3] and [4] through electrostatic and

magnetostatic examples. Consider first that the solution of any

three dimensional Laplacian problem can be thought of as the

weighted sum of the potentials as seen through the solid angle

subtended from the border surfaces to the desired field point.

Consider the two dimensional problem shown in Fig. 1. The

potential M
0
 is related to the perimeter potentials as 

(2)
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= 0

Fig. 2 A Neumann boundary condition will always act like a mirror. 

Fig. 3 Random walk predictions with velocity.

If one of the borders has a Neumann boundary condition as

shown in Fig. 2, the potential changes to 

(3)

It will be shown that problems such as this can be approached

through a random walk process in which packets are collected

along the trip. These packets are in general both added and

multiplied amongst one another to build a representative

solution. The details of this process will be discussed in the full

paper.

Consider a magnetic field problem in two dimensions with

a conducting body moving with a velocity v. The governing

equation for the vector potential n a time harmonic problem can

be written as 

(4)

where k2=jT:F. In a one dimensional embodiment, this

equation can be written as

(5)

The discretized form of this equation yields the result 

(6)

The random walk involves summing the packets involving :J,

again with the multiplier (1+k2 *x2/2). The random walk would

be that in (7), and the solution the average of a number of such

walks. The multiplier has a ± sign. If the random is to the right,

a minus sign is employed, while if to the left, a plus sign. Let

:J=100,:@v=24, and k^2=3. The results of three random walks

are shown in Fig. 3, Fig. 7. The direction dependent sign, and

the results argue for a larger number of walks for the same

accuracy.

(7)

VI. CONCLUSIONS

Monte Carlo methods are useful in providing a new ways

of looking at field theory problems. The collection of packets

with appropriate multipliers has proven to be one approach

applicable to a range of problems.
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From thermostatistic to Maxwell equations: 
A variational approach of electromagnetism 

Vincent Mazauric 
Schneider Electric Corporate Research / A2 

38050 – Grenoble Cedex 9 – France 

Abstract – In this paper, Maxwell equations are derived from 
thermodynamic principles. While divergence-free flux density is 
obtained everywhere from the stationarity of the Gibbs free 
energy, the Maxwell-Faraday equation and the Ohm's law with 
motion are obtained, in conductors, by assuming an adiabatic 
and reversible evolution of the field. Hence, Maxwell-Faraday 
equation may be extended in the dielectric region for any time-
varying excitation. Besides, magnetic- and dielectric-behavior 
laws result from the convexity of the magnetic and electrostatic 
Gibbs potentials. Furthermore, the Laplace and Lorentz forces 
are obtained from virtual work principle. Extension to high 
frequencies is also proposed beyond the plasma pulsation of 
metal. At last, the consistency of the approach with Finite 
Element Method is emphasized in order to present further 
integration of design tools dedicated to industrial and economic 
growth and ecological challenges. 

I. INTRODUCTION

Usually, the Finite Element Method (FEM) is presented as 
a numerical tool to solve Maxwell equations. Then, 
electrodynamical forces are derived from virtual works or 
other suitable methods. The following presentation consists 
in starting from variational principles obtained from 
thermodynamics and showing that they yield functionals 
containing the Maxwell equations (figure 1) [1]. 

Thermostatistics

Variational
formulations

Weak formulations

Maxwell equations

Mesh
Shape functions

Finite element
functional

Weighted residuals

Field calculation

Virtual work
principle

Lorentz's force
Maxwell's tensor

Fig. 1: Flowchart of the thermostatistic approach of electromagnetism. While 
the full lines give the main steps of the approach, the dashed lines indicate its 
numerical description. The mixed lines give the usual introduction of FEM. 

To circumvent the impossibility to provide any 
deterministic evolution, a statistical description is adopted. 
The lack of information is given by the Shannon's entropy S
[2]. Thermostatistics assumes that the steady-state of the 
system is obtained for the maximum of the entropy keeping 
the macroscopic information on the system (internal energy, 
magnetic fluxes �, electric charges Q, �prescribed forces F on 
the bodies…) constrained [3,4]. Such equilibrium 
corresponds to the so-called Boltzmann-Gibbs' statistic law. 
An equivalent description introduces the Gibbs potential as a 
functional of the state variables (respectively temperature T,

net currents I or surface voltage V prescribed by generators, 
positions of the bodies X…), the minimum of which gives the 
Gibbs free energy of the system G(T,...,X) [5]. In a magnetic 
context, its differential reads 

XF dddd ����� ITSG � (1)
For dielectrics, replace the term Id��  by VQ d�

.

II. VARIATIONAL PRINCIPLES IN ELECTROMAGNETISM

After some spatial average on microscopic charge 
distribution to discard short time- and space-variations with 
respect of excitation provided by generators, the conservation 
of the electric charge reads [6] 

0div �

�

�

�

t
�j (2)

where � is the averaged charge density and j denotes the free 
current density, i.e. involving charges able to move on large 
scale with respect to atomic structure. Conductors may 
provide such non-vanishing sources. Hence, it is convenient 
to define the so-called electric displacement field D and 
magnetic field H to replace, in an unbound way, the span of 
the electromagnetic interaction. They check respectively: 
�� the Maxwell-Gauss equation 

��Ddiv (3)
�� the Maxwell-Ampere equation 

t�
�

��

DjHcurl (4)

Among the admissible field couples (D,H), the 
thermodynamic principles will enforce those matching the 
complementary Maxwell equations. 

A. Magnetostatics 

For magnetostatics, the field H is just created by a static 
current density j, given by the minimization of Joule losses. 
The equilibrium of the field is obtained by considering 
variations of field H which do not change neither the Gibbs 
free-energy, nor the current density. Introducing (�B) as a 
conjugate field of H related to the energy density with respect 
of H, the stationarity of 

� � hB
H

���� ��� �rITG 3d),( (5)

under admissible variations ��� �� gradH keeping j
constant in the conductors, yields 

0div �B (6)
Thus, B appears as the magnetic flux density. Notice that the 
numerical resolution of (5) requires a magnetic behavior 
relation B(H). For permanent, local, non-dispersive and 
homogeneous media [7], this behavior law has to check 
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0�� HB �� (7)
to obey the convexity of the Gibbs potential. 

B. Quasi-static approximation 

The so-called quasi-static approximation assumes no 
coexistence between free current density and displacement 
terms in Maxwell-Ampere equation (4). Thus, current density 
j remains divergence-free and only a steady-state averaged 
charge density � may exist in conductors. Furthermore, 
considering invariance of Joule losses under Galilean 
transformations, such charge density does vanish in the bulk 
of conductors. Hence, power delivered by generators reads 

� � � ������� ��

� r
t

r
C

3321 d
d
dd HBHcurl�

(8)

where:
�� the first term corresponds to Joule losses observed in the 

conductors C (with������). The order of this term is even 
to respect invariance of losses with inversion of time. 
Vanishing this term enforces an adiabatic evolution; 

�� the second one is related to time variation of the energy 
coupling the current generators and the magnetic field. 
Vanishing this term provides a reversible conversion 
between generators. 

Therefore, a weak condition for an adiabatic and reversible 
evolution of the field is given by the minimization of (8). 
After a transformation on the convective derivative of the 
coupling energy [8], some tedious variational calculations 
and invariance of any magnetic flux under Galilean 
transformation, it follows that the electric field E in
conductors [9]:
�� is given through the so-called Ohm's law with motion 

� �BvEj ��� � (9)
where v is the local velocity of the conductor and � its
conductivity; and 

�� checks the Maxwell-Faraday equation 

t�
�

��

BEcurl (10)

To summarize, stationarity of (5) is related to the 
determination of the magnetic field according to the current 
flow density whereas Eq. (8) yields eddy current distribution 
according to magnetic flux variations. 

C. Surface-charges excitation 

A Gibbs potential, the minimum of which provides the 
electrostatic Gibbs free energy, describes the electrostatic 
interaction between charges spread out on the surface of 
conductors connected to voltage generators, along with the 
behavior law D(E) of the dielectric media in between. 

In order to enforce a reversible exchange between 
magnetic and electrostatic Helmoltz free-energies, the 
minimization of the power supplied by generators to polarize 
the dielectric yields the Maxwell-Faraday equation (10) in the 
dielectric region too.

Although quasi-static approximation is no more valid, 
metals are known to mimic a dielectric behavior beyond their 
plasma pulsation [7] because free-charge displacements are 

inhibited. Checked at high and low frequencies in conductors, 
Maxwell-Faraday equation is assumed to remain valid in 
between, where eddy-currents are known to eject any field 
from the bulk of conductors. Hence, divergence-free flux 
density becomes also valid for any regime. 

D. Energy conservation: From virtual works to Lorentz force 

According to Eq. 1, the force (�F) acting on the body is 
given by the virtual work principle 

GgradF ��� )( (11)
where the derivation is performed with respect to the position 
X. Hence, Coulomb's force is obtained by considering virtual 
works of the electrostatic Gibbs free energy of a point charge 
in its rest frame. Furthermore, Galilean invariance of this 
force under transformation of the electric field with velocity 
(9) yields the Lorentz expression of the force. 

Besides, the conservation of the energy supplied by 
generators allows to derive the Laplace force density from 
virtual works of the magnetic Gibbs free-energy. 

III. CONCLUSION

The previous approach may be included in an optimization 
paradigm, from scratch to design scale through some relevant 
"coarse graining" procedures. It addresses also a deeper 
justification of the FEM, which consists in building an 
approximation of the variational formulations given at Eqs. 
(5) and (8) but with a finite number of degrees of freedom. 
Hence, the FEM is suitable to bridge design process and 
energy considerations involved in further ecological 
challenges. In this scope, current formulations are clearly 
relevant [10,11]. 
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Total/Reduced Magnetic Vector Potential and Electrical Scalar Potential  
for Eddy Current Calculation 
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Abstract –A low frequency electromagnetic field formulation is 
described using total and reduced magnetic vector potentials 
interpolated by edge elements and electrical scalar potentials 
interpolated by nodal elements. The formulation has been implemented 
in the frequency domain and is shown to be versatile, robust and 
efficient. 

INTRODUCTION 

Static and quasi-static electromagnetic field formulations 
using total and reduced potentials are effective and have many 
advantages. For example, complicated coil structures do not 
have to be meshed and the field from coils can be calculated 
exactly by integration. Formulations based on reduced and 
total scalar potentials for non-conducting materials, coupled 
to vector potentials in conducting materials, minimise the 
number of variables [1], but give badly conditioned matrices 
in extreme cases, such as high aspect ratio elements combined 
with big changes in material properties. 

In this paper a total and reduced magnetic vector potential 
formulation is developed and its implementation using edge 
elements is described. Results for a simple analytic model are 
used to show the accuracy of the solutions. A practical 
example is then used as an extreme test of the method. The 
model consists of thin conducting, permeable plates, solved at 
very low frequencies. It shows that the formulation is more 
robust than methods based on coupled scalar and vector 
potentials.  

POTENTIALS AND FORMULATION

The total magnetic vector potential tA
�

 is defined by  

tAB
��

���                                                    (1) 

and the reduced magnetic vector rA
�

 by  

rs ABB
���

����                                           (2) 

where sB
�

 is the source field magnetic flux 

ss HB
��

0��                                                    (3) 

and the source field distribution, sH
�

, is assumed to be 
calculated by a direct method such as Biot-Savart’s law, such 
that 

ss JH
��

���                                                 (4) 

In conductive regions, an electric scalar potential is 
introduced to make the system of equations easier to solve [2] 
and so that voltage driven boundary conditions can be 
applied.

VAjE t ����

��

�                                             (5)
From Ampere’s law, assuming that the total current density 

includes eddy current density and specified current density.  

sJEJH
����

����� �                                     (6) 
Substituting (1), (4) and (5) into (6), in the total vector 

potential regions Ampere’s law can be presented as 

stt HVAjA
���

���������� ����               (7) 
Applying Galerkin’s method gives 

21 SdHWSVdW

dAWjdAW

s

tt

�����������

��������

��

��

��

��

���

����

�

���

     (8) 

where the surface integrals 1S and 2S  are 

dSnAWS
ts

ˆ)(1 ������ �

��

�                             (9) 

dSnHWS
s s ˆ)(2 ���� �

��

                                  (10) 

The first surface integral corresponds to the natural 
tangential magnetic field continuity condition, the second one 
to source field continuity. 

In conductive regions, the divergence of the current density 
is used to deduce the extra equation required for the electrical 
scalar potential. After scaling for symmetry, the equation is 

��

�

��

�

�

�

������

����

dSn
j
VAwdAw

Vdw
j

t ˆ)(

1

�

��

�

�

��

       (11) 

In free space, the equation for the reduced potential is 

�� ����������

� s rr dSnAWdAW ˆ)( 00

����

��      (12) 

The total and reduced potential regions are naturally 
coupled by the tangential field continuity condition 

nHAnA stt ˆ)(ˆ 0 ��������

���

��          (13)

DISCUSSION

In equation (7) the source current density was replaced by 
the curl of its field strength, this leads to a representation of 
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the source fields on the consistent function space [3], at the 
expense of evaluating the source fields in the total potential 
region. 

The advantage of using reduced potentials depends on the 
application, for example in NMR magnet simulations the 
fields can be evaluated to very high accuracy because the 
source fields dominate and they are calculated with no 
discretisation error. 

EXAMPLES

The first testing example is a conductive sphere of radius of 
10 cm and conductivity of 710 S/m in uniform AC field of 
100 Hz. FE result (solid green) is compared with analytical 
solution (dashed red) in Fig. 1. Numerical error appearing on 
the surface of the sphere can be overcome by fine mesh 
around the surface. 

Fig. 1. Bz along x axis 
Eddy currents occur in ships induced by the “rocking” 

motion caused by waves in the earth’s magnetic field.  A 
typical ship largely consists of thin steel and aluminium 
plates. Modelling these may produce a badly conditioned 
system of equations, because the large aspect ratio of thin 
shell structures and high permeability and conductivity of the 
plates [4]. Figure 2 shows the model of a ship, with 155-metre 
long steel hull of 5cm thickness, additional superstructures, 
bulkheads and decks, placed near a rectangular coil with AC 
current of 0.167 Hz. This represents the variation of the 
vertical component of earth magnetic field due to the rocking. 
Only a half of space is modelled because of symmetry. The 
steel has a conductivity of 6103� S/m and relative 
permeability of 110. The conductivity of the aluminium is 

7105.2 � S/m. A box of 1750x500x500 cubic metres around 
the ship is meshed by 136,448 hexahedral elements. Element  
aspect ratios up to 2,000:1 for free space and 100:1 for steel 
and aluminium plates are used. This model was solved using 
the total/reduced vector potentials with electrical scalar 
potential formulation. It required 7,554 QMR iterations to 
converge to a relative residual of 810� for an equation system 
of 412,033 freedoms. The in-phase eddy current distribution 
is shown in Fig. 3. 

After removing scalar potential V from equation system, 
the number of freedoms reduces to 394,603, but the number 
of QMR iterations increases to 14,661. 

Fig. 2. A model ship with coil modelling earth’s field 

Fig. 3. Current density 
More examples, such as voltage driven problems, and 

discussion on numerical accuracy, arrangement of vector 
potentials and convergence of linear equation solvers will be 
presented in the full paper. 

CONCLUSIONS

The Total/Reduced magnetic vector potential formulation 
has been found to give accurate results by comparison with 
analytical calculations. It has been demonstrated that the 
QMR solution method gives reliable convergence even for 
models with extreme aspect ratio elements. 
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Abstract—A new subspace projection extrapolation (SPE) scheme is in-
troduced for the implicit time integration of electromagnetic discrete field
formulations to construct suitable start vectors required for the iterative
solution of the (non-)linear algebraic systems of equations. Numerical re-
sults show a significant improvement in numerical efficiency with this new
extrapolation scheme when compared to previously proposed methods.

I. INTRODUCTION

Spatial discretizations of transient quasistatic electromagnetic
field formulations with e.g. the Finite Element Method (FEM)
or the Finite Integration Technique (FIT), commonly result ei-
ther in large stiff ordinary differential or differential-algebraic
systems of equations of the form

�
�

��
x��� ���x���� x��� � ����� (1)

whose evolution of the��component vector x��� � �� in time
has to be considered over a given time interval. (For magneto-
quasistatic formulations see e.g. [1], for electro-quasistatic sys-
tems [2].)

This task requires to use suitable implicit time integration
schemes, e.g. one-step schemes such as the simple ��methods,
the multi-stage embedded (singly diagonal) implicit Runge-
Kutta ((SD)IRK) methods [3], [4] and linear-implicit time in-
tegration schemes of Rosenbrock-Wanner-type [3], [5], which
were just recently introduced to quasistatic electro-magnetic
field simulations [1], or the multi-step backward differentiation
schemes [3]. In these methods in each time step one or sev-
eral large (non-)linear algebraic systems of equations have to
be solved. For the iterative solution methods of these systems
extrapolation schemes can provide suitable initial start values.
Such first approximations of the solutions at the respective new
time steps should be computationally cheap to attain and allow
to effectively reduce the number of subsequent iteration steps of
the preconditioned conjugate gradient solvers. This was shown
e.g. in [6], where several extrapolation techniques are com-
pared to produce an initial vector x������ for the iterative solution
x����� � x������ of the algebraic system at time ������

�x����� � ������� (2)

with� � ������� where � is a scalar parameter depending
on the chosen time step length ��� The extrapolation schemes
process available information at times � � ������ to predict the
solution at time ������, commonly using the Taylor expansion

M. Wilke is supported by the Deutsche Forschungsgemeinschaft (DFG) under
grants WE1239/13-1 and WE1239/17.

theorem or variants thereof in case of the structurally more com-
plicated multi-stage IRK methods. Since all the extrapolated
start vectors x���� � � �� ����	� for the iterative solution of (2)
are computationally cheap to attain with the different variants of
Taylor expansions described in [6], a minimal residual norm se-
lection criterion was proposed in [6] and shown to yield a robust
improvement to the solution processes.

II. SUBSPACE PROJECTION EXTRAPOLATION SCHEME

For the situation of multiple extrapolated start values we in-
troduce a computationally more efficient scheme. In the new
Subspace Projection Extrapolation Scheme we adapt an idea
used in frequency domain simulations [7] to the regime of im-
plicit time stepping methods.

To attain a suitable start solution vector x��S.P.E. out of	 differ-
ent extrapolation vectors x��� derived with methods from [6] for
the time step solution x����� the following steps are performed:

1. Apply an orthonormalization process to the extrapolation
vectors x���� � � �� ����	� (e.g. by applying a Modified Gram-
Schmidt (MGS) algorithm) to yield a set of �	 vectors

�x�������������
M.G.-S.
�� �v������������� (3)

2. Define the orthonormal operator

� �� �v������v ��� � ��� �� � (4)

3. Solve the projected algebraic �	� �	 system for � � � �� with

�
�
��� � ��

�
������ (5)

4. Define extrapolation vector x��S.P.E. �� �� � 

�� � �

� �

The orthonomalization process in step 1) will detect lin-
ear dependencies among the extrapolation vectors x���� thus
�	 	 	 holds. The vectors v� will also span a vector sub-
space 


�� � span�v�� � span�x���� � �
� as basis vec-

tors. Since typically �	 
 �		 
 � holds, the projected
system (5) in step 3) can be solved very efficiently using direct
Gauss elimination. The computational effort to prepare the sys-
tem (5) only involves �	 matrix-vector-multiplications and 
�	
dot-products of ��component vectors and can be performed
in parallel. For the result vector x��S.P.E. the Galerkin condition
�

� ������� ��x��S.P.E.� � 	 holds w.r.t. 

���

A. Nonlinear Subspace Projection Extrapolation

If the matrix � � ��x� depends on the solution vector
due to a nonlinear stiffness operator��x� in (1) (ferromagnetic

1
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Fig. 1. Three eddy current test problems: 1) A copper plate with a hole. 2) The
TEAM 11 problem. 3) Nonlinear TEAM 21b problem.

TABLE I

EXTRAPOLATION STRATEGIES FOR A FIXED TIME STEPPING

BDF1-SCHEME (TOTAL NUMBER OF MXV-OPERATIONS).

Problem No. 1 No. 2 No. 3

(a) Taylor 1st order x�����
� �� x��� 3424 6663 -

(b) Taylor 2nd order x�����
� �� x��� ��� �x��� 2554 16730 -

(c) Minimal norm hybrid method for (a), (b) 2714 6703 74392
(d) SPE scheme using (a), (b) (� � �) 923 2889 41182

materials in magneto-quasistatic problems or field-dependent
conductivities in transient electro-quasistatic simulations), lin-
earization schemes such as the Successive-Approximation
method or the Newton-Raphson method have to be applied. To
achieve suitable start values for these methods, steps 3. and 4. in
the SPE scheme are replaced by few Successive-Approximation
steps � � �� �� ���� restricted to the subspace �

��

�
�
��x��������� � ��

�
������ x����� �� ������ (6)

where this iteration is started for � � � with x��� �� x����

III. NUMERICAL RESULTS

Different extrapolation strategies are compared to the new
SPE scheme for a FIT-based modified vector potential formu-
lation for typical transient magnetic test configurations shown
in Fig. 1. Problem 1 is related to the TEAM 7 problem, a cop-
per plate with a hole featuring a ramped 50 Hz sinusoidal cur-
rent excitation simulated for 80 time steps. Problem 2 is a hol-
low conductive, non-ferromagnetic sphere in an abrupt B-field
(TEAM 11) integrated with 40 time steps. Problem 3 consists of
the TEAM 21b problem, a nonlinear 50 Hz time harmonic eddy
current problem, simulated over 50 time steps (see also [6]).

In Table I the effect of the new SPE method is displayed for
the commonly used implicit BDF1 method and in Table II for
a time step adaptive 4-stage SDIRK3(2)-method [4]. The solu-
tion of the linear algebraic systems is performed with a SSOR-
preconditioned CG method which terminates its iterations af-
ter having reached a relative accuracy � PCG � ����. The com-
parison of the different start strategies is given in terms of the
required total number of matrix vector multiplications (MxV-
operations) for the time integration process. This number corre-
sponds well to the required computational time.

The results for both the standard fixed-time step BDF1-
scheme as well as the adaptive SDIRK3(2)-scheme show that
the application of the SPE speeds up the solution process by
a factor � � for linear problems when compared to just using
the 1st order Taylor expansion, i.e., starting the PCG-iterations
with the old solution x�����

� �� x���� The new SPE approach

TABLE II

EXTRAPOLATION STRATEGIES FOR THE ADAPTIVE SDIRK3(2)-SCHEME

[4] (TOTAL NUMBER OF MXV-OPERATIONS).

Problem No. 1 No. 2 No. 3

(a) Taylor 1st order x�����
� �� x��� 4636 12310 70647

(b) Taylor 2nd order x�����
� �� x��� ��� �x��� 4473 10925 69946

(c) Stage-extension extrapolation 3877 7466 58799
(d) Continuous extension extrapolation 4145 10778 66660
(e) Minimal norm hybrid method for (a),(c),(d) 3777 6688 55198
(f) SPE-scheme using (a),(c),(d) (� � �) 2743 6572 35743

TABLE III

EXTRAPOLATION STRATEGIES FOR THE ADAPTIVE LINEAR–IMPLICIT

SCHEME RODAS3(2) [1] (TOTAL NUMBER OF MXV-OPERATIONS).

Problem No. 1 No. 2 No. 3

Zero start vector ��
�����
� �� � 8397 8135 87277

SPE scheme using 3 last stage solutions (� � �) 4766 5537 45590

also outperforms all the extrapolation methods presented in [6].
The convergence of the nonlinear problem, in which � nonlinear
SPE-cycles are performed before entering the nonlinear iteration
scheme, is also considerably improved.

In Table III results for the linear–implicit time integration
method RODAS3(2) [5], [1] are depicted. Its intermediate stage
solutions, for which only linear systems have to be solved,
no longer have interpolating character. Thus the extrapolation
schemes available for SDIRK-methods [6] are not directly ap-
plicable and zero start vectors are commonly used. The appli-
cation of the new SPE scheme to its respective three last stage
solutions (� � �), however, allows to achieve a considerable
speed-up of the PCG solver convergence.

IV. CONCLUSION

For transient implicit time integration processes the new Sub-
space Projection Extrapolation (SPE) scheme was presented,
which could be shown to significantly improve the numerical
efficiency of quasistatic electromagnetic field simulations. The
upcoming full paper will contain more details on the method, its
mathematical background and additional numerical tests.
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Abstract  Two versions of variational-difference method for 
solving inhomogeneous problems with curved material boundaries on 
regular hexahedral grids are developed. The solution is at least as 
accurate as in the finite element method on irregular geometrically 
conforming meshes but the data structures are as simple as in finite 
difference schemes. The proposed approach combines the ideas of the 
Generalized Finite Element – Partition of Unity methods, Discontinuous 
Galerkin Methods and Finite Difference / Finite Volume / Finite 
Integration Techniques. 

I.  INTRODUCTION

The Finite Element Method (FEM) is well known for its 
flexibility of handling complex geometrical and material 
properties. However, this flexibility comes with a price. Mesh 
generation and the associated data structures can be complex, 
especially in 3D. Consequently, FEM is not competitive with 
finite difference (FD) methods for simple geometries. 

The “Finite Element Difference” (FED) method proposed 
in this paper is expected to remedy this disadvantage at least 
in part. The name of the method is motivated by the fact that 
finite element / variational-type principles are used for its 
construction, whereas the resultant system is finite difference-
like. We shall consider two related versions of the method, 
with applications to a model static equation 

∇⋅σ∇u  = f      (1) 
Here σ is a material parameter (conductivity, permittivity, 
permeability, etc.) that can be discontinuous across material 
boundaries and can depend on coordinates but not, in the 
linear case under consideration, on the potential u. The com-
putational domain is either two- or three-dimensional, with 
the usual mathematical assumption of a Lipschitz-continuous 
boundary. Extensions of FED to other types of electromag-
netic problems will certainly be explored in the future. 

FED builds up on several computational techniques that 
over recent years have been converging, from different per-
spectives, to an FD-style method with FE-type capabilities: 
(a) “Finite Integration Techniques” and their enhancements 
[1], [2]; (b) heuristic homogenization by geometric averaging 
[3], [4]; (c) homogenization based on variational principles 
[5]; (d) Generalized FEM by Partition of Unity [6] and its 
applications to multiparticle problems [7]; (e) “discontinuous 
Galerkin” methods [8]; (f) the “discrete Hodge” operator in 
electromagnetic analysis [12], [13].  

II.  AN OUTLINE OF THE  METHOD

Due to space limitations, only the main ingredients of the 
method are outlined here; a more detailed mathematical de-
scription and analysis will be given in the extended paper. 

The first ingredient is special approximating functions sat-
isfying the interface condition σ1∂u1/∂n = σ2∂u2/∂n. Such 
functions can be constructed by spatial mappings (x, y, z) →
( x~ , y~ , z~ ) −  see [9] for plane boundaries, [10] for spherical 
ones. A trilinear or higher order FE basis in terms of the 
transformed coordinates x~ , y~ , z~ can then be used. Notably, 
this construction is valid even for spherical surfaces contained 
entirely within one hexahedral grid cell – quite a desirable 
feature for problems with small particles [7] . 

The second ingredient is the variational scheme itself. We 
consider two options. The first one is based on the General-
ized FEM by Partition of Unity [6] and ensures seamless 
integration of different local approximations.  

An alternative variational scheme is formulated in the so-
called “broken Sobolev space” [11] well known in Discon-
tinuous Galerkin methods [8]. The FE method in this case is 
nonconforming: the continuity is imposed only at the grid 
nodes. The theoretical analysis is substantially more compli-
cated than for GFEM but implementation is simpler and the 
initial numerical results are promising (Section III). 

Both versions of FED have the following attractive fea-
tures that will be explained fully in the extended paper: 
• Curved interface boundaries can be handled on regular 

rectangular or hexahedral grids with at least the same level 
of accuracy as for geometrically conforming FE meshes. 

• In many cases, much coarser grids can be used in FED 
than in FEM because small geometric details do not have 
to be resolved in FED. 

• There is a great deal of flexibility and independence in the 
choice of approximating functions over each grid cell. 

• The resultant discrete system is symmetric positive defi-
nite, with no additional unknowns other than the nodal 
values of the potential. 

• Regular rectangular and hexahedral grids typically lead to 
9-point and 27-point stencils, respectively, as in the stan-
dard FEM with bilinear / trilinear brick elements. 

• High order approximation is possible. 
III.  NUMERICAL RESULTS

First, the following very simple 1D example highlights the 
role of special approximating functions. Consider the differ-
ential equation (σu′)′ = 0 on segment [0, 10], with σ = 10 on 
[0, a], σ = 1 on [a, 10] and with Dirichlet conditions  u(0) = 
0, u(10) = 1. 
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Within the finite element (segment) containing the discon-
tinuity a, FED basis functions are piecewise-linear and satisfy 
the derivative jump condition at a, as opposed to just a linear 
approximation in the standard first order element.  

For 20 elements and a = 6.7, the 1D mesh is nonconform-
ing (i.e. point a is not a node) – hence the discrepancy be-
tween the FEM solution and the exact one (Fig. 1). In con-
trast, the FED solution is exact up to round-off errors. 

Fig. 1. FED vs. standard FEM for a simple 1D problem. + - FEM, × - FED, 
o – exact solution.

As a 2D example, we consider a dielectric cylinder in an 
external field. The domain is the unit square [0,1]×[0,1], with 
an inhomogeneous Dirichlet boundary condition chosen to 
make the analytical solution easily available. Convergence of 
the numerical potential as a function of mesh size h is shown 
in Fig. 2: the slope corresponds to order O(h) or slightly bet-
ter. The same is true for convergence in the energy norm and 
for an analogous 3D case. 

Remarkably, analysis of the potential distribution shows 
that even for a very crude 4×4 grid, in no way capable of 
capturing the cylindrical boundary, the computed values of 
nodal potentials are quite accurate. This is again due to the 
special approximating functions employed. 

Fig. 2. Relative error in the maximum norm for the potential values computed 
by FED;  domain [0,25]×[0,25], rcylinder = 4, σcylinder =10, σoutside = 1; meshes 
from 5×5 to 160×160.   relative error = || uFED – uexact || ∞  /  || uexact || ∞.

Finally, both versions of FED give accurate results for a 
3D test problem related to multiparticle assembly processes in 
nanotechnology; the setup was given in [7]. A FEMLABTM

simulation was also performed for additional comparison.  
                                                          
TM FEMLAB is a registered trademark of Comsol, Inc. 

Fig. 3. Scalar potential for three 
magnetic particles near a magnet-
ized substrate (FEMLAB).

Fig. 4.  Solid line: mesh 40×40×40, 
GFEM, trilinear elements – coincides 
with FEMLAB simulation, 2nd order 
tetrahedral elements. Diamonds:
FED, mesh 20×20×20, 6,859 d.o.f. 

The results obtained by GFEM, FED and FEMLAB are in 
good agreement (Fig. 4). Notably, the grid size in FED is 
equal to the radius of the particles, i.e. not at all sufficient to 
resolve the geometry of the spherical boundary. This is possi-
ble because the behavior of the solution at particle boundaries 
is analytically incorporated into the FED approximation. 

IV.  CONCLUSION

The proposed methodology allows one to solve complex 
inhomogeneous problems with curved boundaries on regular 
meshes. In contrast with finite volume – finite integration 
techniques, the construction of the difference scheme is based 
on variational principles. The approach can be viewed as a 
combination of finite element and finite difference methods. 
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Abstract— We propose a systematic methodology for the con-
struction of generalized hanging variables which can be used
to connect finite elements of unequal refinement levels within a
nested tetrahedral mesh. While conventional refinement schemes
introduce irregular elements at such interfaces, which must
be removed when the mesh is further refined, the suggested
approach keeps the discretization perfectly nested. Thanks to
enhanced regularity, mesh-based methods such as refinement
algorithms or intergrid transfer operators for use in multigrid
solvers can be implemented in a much simpler fashion. The
present paper covers higher order H1 and H(curl) conforming
elements of hierarchical type.

I. INTRODUCTION

Nested meshes exhibit a number of special properties that
make them very well-suited for adaptive finite element solvers.
First, they guarantee that mesh quality does not deteriorate as
portions of the mesh are repeatedly refined. Second, they are
perfectly suited for multigrid methods and hence allow for
highly efficient linear equation solvers. Third, they exhibit a
high degree of regularity which can be exploited in error esti-
mators or for data extrapolation. However, one difficulty with
nested meshes is that, in the case of non-uniform refinement,
finite elements of unequal refinement levels must be connected
without destroying the proper continuity of the basis functions
across element interfaces. In conventional schemes, regions of
unequal refinement levels are stitched together by means of so-
called ”red” or ”green” elements [1] [2] [3], which are irregular
in the sense that they are of inferior quality than their parents
and hence must be removed when the mesh is further refined.
In the three-dimensional case, the number of possible element
configurations to be taken into account is getting large. As a
result, computer implementations of such methods tend to be
rather involved.

Alternatively, one may allow finite elements of unequal
refinement levels to touch (see Fig. 1) but impose constraints
on the basis functions in order to maintain the proper conti-
nuity requirements along common edges or faces. Since the
construction of such constraints is intimately related to that
of intergrid transfer operators, this approach is particularly
attractive in the context of multigrid solvers. Moreover, its
computer implementation is rather straightforward.

In this paper, we develop two variants of the latter approach
and compare their respective properties with regard to flexi-
bility, memory consumption, and numerical convergence.
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Fig. 1. a: Initial mesh. b: Nonuniform refinement. c: Recursive refinement.

II. BASIC REFINEMENT

Here, we demonstrate the idea of our basic refinement
strategy just for the two dimensional case. Given the consistent
mesh of Fig. 1a, assume that triangle T123 is to be refined. As
shown in Fig. 1b, we first subdivide all elements that have an
edge in common with T123. In a second step, we restore the
proper continuity conditions by restricting the finite element
basis along the outer edges E41, E16, E62, E28, E83, E34 to
that of the coarse mesh. As detailed in [5], this is accomplished
by pre- and post-multiplying certain projection matrices to the
element matrices of triangles T134, T162, T283.

The basic refinement strategy is simple and easy to im-
plement. When applied recursively as in Fig. 1c, it auto-
matically creates some gradation in element size, which is
often desirable in practise. On the other hand, Fig. 1b shows
that the numbers of extra triangles and edges introduced by
subdividing a single element may be significant. In three
dimensions, this effect is even more pronounced. For higher
order elements, each newly generated edge or triangle may add
some extra variables to the global equation system. In auto-
adaptive methods, where we want to place degrees of freedom
most selectively, the basic refinement method may hence not
be the best.

III. REDUCED ELEMENTS

For optimum computational efficiency, we want to add to
the triangles T134, T162, T283 only degrees of freedom that
are absolutely necessary to maintain the required interface
conditions across the edges E12, E23, E31. Let us consider the
triangle T134 as subdivided into four fine mesh triangles. We
denote the sets of fine and coarse mesh basis functions over
the domain of T134 by {Nh} and {N2h}, respectively, and
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Fig. 2. a: Fine mesh functions. b, c: Coarse mesh functions plus corrections.

write F = #{Nh} and C = #{N2h} for the corresponding
numbers of basis functions. Since we have

span{N2h} ⊂ span{Nh} (1)

for both H1- and H(curl)-conforming elements, we may
express any basis function N 2h as superposition of fine mesh
functions 


N2h

1
...

N2h
C


 = [R]C×F




Nh
1
...

Nh
F


 , (2)

where [R] is a well-defined restriction matrix. We state without
proof that [R] is unique and purely topological in nature,
i.e., it does not depend on the actual geometry. To maintain
the proper continuity conditions across E12, we must provide
corrections N c ∈ span{Nf}. Of course, N c must be chosen
such that it does not destroy continuity on the other edges,
E16 and E62. Denoting by C(N) the continuous components
of N across interfaces, we obtain

[
C(N2h)

]
= [A]

[ [
C(Nh)

]
[C(N c)]

]
. (3)

Note that the matrix [A] is not unique. Fig. 2 illustrates for
the H1 case that, even at the interface E12, the second order
correction N c

2 may be chosen in different ways. Also, one may
always construct a valid correction Ñ c from a given N c by
adding a superposition of fine mesh basis functions associated
with the interior edges E9,12, E12,13, E13,9. The choice of [A]
or {N c}, respectively, has great impact on important properties
of the global system matrix such as the number of non-zero
entries or the eigenvalue distribution. Equations (2) (3) allow
us to investigate these issues in a mathematical setting.

Once the matrix [A] has been fixed, we are able to construct
the reduced set of basis functions for the triangle T162. We first
generate element matrices [M ]klm for the fine mesh triangles
T1,12,9, T12,6,13, T13,2,9, T12,13,9. Then, we utilize (2) (3) to
derive transformation matrices [P ]klm to perform all necessary
changes of basis and subspace restrictions. In the end, the
contributions [M̃ ]klm of each of the fine grid triangles to the
reduced element matrix of T162 are given by

[M̃ ]klm = [P ]Tklm[M ]klm[P ]klm. (4)

IV. NUMERICAL RESULTS

As a test example, we consider a dielectric block inside
a rectangular waveguide [4] as shown in Fig. 3. By refining
twice, the mesh size in the obstacle is set to be 1/4 the size in

Fig. 3. Dielectric obstacle inside rectangular waveguide [4].

TABLE I

COMPARISON OF REFINEMENT METHODS

Method Variables Non-Zeros MG-Iterations
Basic Refinement 77350 2 147 185 12
Reduced, Version A 58030 1 923 775 147
Reduced, Version B 58030 1 563 746 10

the air region. Our finite element implementation is based on a
combined vector and scalar potential formulation and employs
a combination of second order H1- and H(curl)-conforming
basis functions. The multigrid method of [5] is used for the
solver. Table I gives a comparison of the basic refinement
strategy and two versions of the reduced element approach
which differ in the choice of correction functions N c. Even
though the latter two methods markedly decrease the number
of variables as compared to the basic approach, Version A fails
to significantly improve the number of non-zero matrix entries
and suffers from poor numerical convergence. On the other
hand, Version B is memory-efficient and fast. We mention that
the numerical results of all three methods are almost identical.

V. CONCLUSION AND OUTLOOK

Generalized hanging variables provide an attractive alter-
native to the red/green refinement schemes typically used for
non-uniform, nested finite element meshes. We have proposed
a new reduced element approach which is more efficient than
a straightforward refinement strategy, and we have outlined
the underlying theory. In the full paper, a complete analysis
of higher order H1- and H(curl)-conforming tetrahedral ele-
ments of hierarchical type will be given. In particular, we will
describe how to construct the required fine mesh corrections
in an optimal way.
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Abstract – This paper deals with a distributed time domain modeling 
of electromagnetic phenomena with the finite element method. The 
model is approximated by edge elements. The constitutive equations and 
method of parallelization of the algorithm are presented. The specific 
assembling by degrees of freedom technique is implemented in the 
algorithm. The properties of the distributed FETD algorithm are 
discussed. The algorithm is tested on a PC heterogeneous cluster. 

INTRODUCTION

Flexibility of the finite element technique and right 
physical sense of the edge elements make this formulation 
useful in modeling of electromagnetic phenomena. High 
performance simulation of the time domain problem enables 
to reduce either memory cost or time of computation, but as 
usual some weaknesses of the distributed version are revealed 
[1]. In this paper the properties of the vector finite element 
time domain algorithm are evaluated in the known distributed 
multi-computer environments (MPI and PVM). 

PROBLEM FORMULATION

The distribution of electric field is stated by time 
dependent vector wave equation 
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where �, �, � are the parameters of the media and Jimp is the 
source current. The domain of analysis is truncated with first 
order Engquist-Majda absorbing boundary condition (ABC). 
In the case of excitation by a plane wave, according to general 
Galerkin scheme, the weak form of eq. (1) is given by 
expression 
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where W is the test vector function, SABC is the external 
surface of the model and Ei is the incident field. This equation 
is discretized in time domain and in space domain to yield a 
system of linear equations which must be solved. Space 
discretization is achieved using incomplete first order H(curl) 
tetrahedral edge elements. Considering the central Euler 
difference approximations of the first and the second order 

derivatives, the final form of the equation is  
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where R, T, S are mass, damping and stiffness matrices. The 
fn vector represents the dynamic load in the analyzed model.  

DISTRIBUTED IMPLEMENTATION

The FETD algorithm involves many types of computing 
tasks, ranging from two- and three-dimensional assembling, 
to extensive matrix operations. These computationally 
intensive operations are performed in two main stages: 
assembling of the matrix equation, and time integration loop.  

First, each processor reads the entire data file coming 
from the mesh generator providing a nodal description of the 
geometry. The entire edge description of the geometry is then 
performed in parallel. Finally, only the data required on each 
processor are stored in memory.   

The distributed version of the assembling stage is based 
on the classical domain decomposition paradigm. Because the 
unknowns are connected with the edges, the set of edges is 
decomposed. There are no geometrical restrictions of the 
decomposition, because the matrices are assembled by 
degrees of freedom [2, 3]. Each computing unit assembles the 
matrices only for its local subset of edges.  

As the result of the distributed assembling, the matrix 
equation (3) is distributed by lines among processing units of 
a cluster. Therefore the basic matrix and vector operations are 
parallelized in the time integration loop. First each processor 
assembles his part of the right hand side (incident wave or 
source antenna). These partial source terms are concatenated 
in SPMD mode. Then the Preconditioned Conjugate Gradient 
(PCG) is used to solve the matrix system. Since the matrix 
system is well preconditioned, diagonal preconditioning is 
used to avoid messages passing during this stage. Partial 
matrix vector multiplications [2] are performed in parallel. 
Only non zero terms of partial vectors are sent for the 
concatenation (SPMD mode).  

Efficiency of the algorithm is evaluated on a 
heterogeneous cluster of PC workstations (COW) connected 
by a Giga switch. The efficient data transfer between 
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processing units is a critical issue in the distributed 
implementation. The interdependent threads communicate 
through either MPI or PVM message passing environment. In 
the MPI version, the network traffic is minimized by using 
broadcast communication rather than point-to-point data 
transfer. In the PVM version the processing units 
communicate only in the individual mode because of the low 
performances of the implemented broadcast function. 

RESULTS AND DISCUSSION

The elaborated algorithm is scalable, because the number 
of computing units can be flexible matched in SPMD mode. 
The real enlargement of the FE model is limited by minimum 
size of memory of a single computing node, because the set of 
data is not totally decomposed. Table I gives the memory 
repartition for a 342342 degrees of freedom (DOF) problem. 
Global variables are the set of data duplicated on each 
processor (global vectors, …). Local variables concern data 
specific to each processor (mesh, lines of the matrix, …). 

TABLE I. SCALABILITY OF THE ALGORITHM.

Processing units in the cluster of workstations 
1 2 3 4 

Local variables  100% 100% 100% 100% 
Global variables 270% 140% 98% 75% 

The interdependence of the processes is different in the 
assembling stage and in the time integration loop. The 
assembling thread in the processing unit is loosely connected 
with the others threads. The subtasks in the distributed 
implementation of the PCG algorithm are tightly coupled. In 
this case, the workstations are loaded uniformly (table II).  

TABLE II. LOAD BALANCING OF THE ALGORITHM FOR 4 PROCESSORS.

Processing units in the cluster of workstations 
1 2 3 4 

Assembling stage  100% 106% 110% 117% 
Time integration loop 100% 100% 100% 100% 

The speedup of MPI implementation evolves when the size of 
the assembled FE model is changed (fig. 1). For the largest 
FE models, the speedups of MPI and PVM implementations 
are approximately equal. 
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Fig. 1. Speedup of the assembling stage as a function of DOF  
(4 processing units in the COW). 
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Fig. 2. Speedup of the assembling stage, one time step of the solving stage 
and for the total computation (342342 DOF problem). 

The speedup of MPI implementation evolves with the size 
of the assembled FE model (fig. 1). For the largest FE 
models, the speedups of MPI and PVM implementations are 
approximately equal. They increase linearly with respect to 
number of processing units, however it is less than the ideal 
one (fig. 2). This stage is highly parallelized, but inherently 
sequential nature of input operations and mutual data transfers 
of BC data slow the overall speedup down. On the other hand 
the speedup of the solver stage (one time step: source term 
assembling and PCG) is below 1 for any FE model (fig. 2). 
This effect arises from non-overlapped, intensive 
communication and inter-dependencies between distributed 
threads of the PCG subroutine. Therefore, for a 342342 DOF 
problem, the total speedup (assembling and 300 time steps) is 
greater than 1 (fig. 2). 

The communication pattern of the parallel FETD 
algorithm is fully structured and predictable. The 
computational load is proportional to the local size of 
sub-model. The communicational load is proportional to the 
total number of edges in the FEM model, and it depends on 
the number of processing units in the cluster. The heart and 
bottleneck of the concurrent FETD algorithm is the 
distributed solver for large sparse matrix equation. 
Furthermore, the scalability of the parallel algorithm is very 
good. In this way, realistic problems can be solve (fig 3). 
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Fig. 3. Scattering by a PEC airplane in time domain  (574151 DOF). 
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Abstract � We have developed a new 3-D finite element mesh 
modification method for skewed motors. In this paper, the method is 
presented and is applied to the 3-D magnetic field analysis of a skewed 
squirrel-cage induction motor. 

INTRODUCTION

The magnetic field analysis for skewed motors is 
conventionally carried out using the 2-D finite element 
method with considering several cross-sections at the 
different axial position [1]. Using the 3-D finite element 
method, it is carried out with the regular coupling mesh [2] or 
with the mesh adapted by the auto-mesh generator at each 
rotation angle [3]. However, if the 2-D FEM with several 
cross-sections, it is difficult to obtain the three dimensional 
flux and eddy current distributions. On the other hand, if the 
3-D FEM with the regular coupling mesh or with adapting the 
mesh is used, it is necessary to solve the equation for the 
regular coupling mesh or to modify the mesh at each rotation 
angle so that they require a long computing time. Then, we 
have developed a new 3-D finite element mesh modification 
method for skewed motors. In our method, the auto-mesh 
generator is necessary, however, the conventional method is 
available for the mesh modification at each rotation angle [4]. 
The auto-mesh generator is used for only making the initial 
mesh and the computational cost is very small. In this paper, 
the method is presented and it is applied to the 3-D magnetic 
field analysis of a skewed squirrel-cage induction motor. 

ANALYSIS METHOD

A. Magnetic Field Analysis 

The fundamental equations of the magnetic field using the 
3-D finite element method can be written using the magnetic 
vector potential A and the electric scalar potential � as 
follows [4]: 
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where, � is the reluctivity, J0 is the exciting current density, 
Je is the eddy current density and � is the conductivity. 

B. 3-D finite element mesh modification method for 
skewed motor analysis 

Our newly developed method for the skewed motor 
analysis is carried out as follows: 

First of all, the conventional 3-D mesh for the motor 
analysis is prepared, which is not skewed and is made by 
building up the 2-D mesh as shown in Fig. 1 (a). The air gap 
between the stator and the rotor is divided into two areas. One 
is in the stator region and another is in the rotor region. Next, 
the elements in the air gap of the rotor region are deleted as 
shown in Fig. 1 (b). Then, the rotor is skewed as shown in Fig. 
1 (c). At last, the skewed rotor and the stator region are 
connected to each other by the auto-mesh generator as shown 
in Fig. 1 (d). 

In this process, new elements, nodes and edges are 
generated in the air gap of the rotor region. The number and 
the coordinates of nodes on the surface of the new rotor 
region are corresponded to those on the surface of the rotor 
region. If the tetrahedral elements are used, it is necessary to 
consider the relationships of edges between the rotor and 
stator regions as well as those of nodes. 

Using the initial mesh created by the above method, the 
mesh modification at each rotation angle is performed as 
usual [4]. In our method, the auto-mesh generator is used for 
making only the initial mesh and it is limited in the air gap of 
the rotor region. Therefore, it is not necessary to use the auto-
mesh generator at each rotation angle. 

(a) conventional 3-D mesh 
(not skewed)

(b) delete of elements 
in air gap of rotor region

(d) mesh after connection(c) skewing of  rotor core 
Fig. 1. Process of initial mesh creation. 
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ANALYZED MODEL AND CONDITION

Fig. 2 shows the analyzed model of a squirrel-cage 
induction motor, which rotor is skewed with one rotor slot 
pitch. It is 1/2 of the whole region because of the symmetry 
and periodicity. The three-phase coils are connected in the Y-
connected circuit [5]. The rated voltage is 100V and the 
frequency is 50Hz. Fig. 3 shows the 3-D finite element mesh. 
The number of element is 494,244. 

RESULTS AND DISCUSSION

Fig. 4 shows the contours of the flux density in the stator 
and rotor core. It is found that the flux density distributes 
three dimensionally due to the skew. Especially, the upper 
part differs from the under part on the stator teeth or the rotor 
surface. Fig. 5 shows the distribution of the eddy current 
density vectors in the secondary conductor. It is found that 
the eddy currents flow complexly in the bars through the end-
ring. The results of measured and calculated torque and 
current will be shown in the full paper. 

CONCLUSIONS

We have developed the new mesh modification method 
for the skewed motor analysis using the 3-D finite element 
method. 

It is applied to the analysis of the skewed squirrel-cage 
induction motor. The validity of our mesh modification 
method is clarified through the computation of flux and eddy 
current distributions. 
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Abstract  In this paper, we propose a novel method for the transient eddy 
current analysis of moving conductor using the moving coordinate system and 
the adaptive finite element meshing. The error estimation and the auto meshing 
are applied at each time-step to obtain the appropriate finite element mesh at 
each position of the conductor automatically. The interpolate calculation is 
carried out to obtain the potential of the conductor at previous time-step for the 
calculation of eddy currents. The proposed method is applied to the solid and 
cage induction motors, which include homogeneous and heterogeneous moving 
parts, to clarify the validity and the advantages. It is clarified that the proposed 
method gives accurate results with small number of finite elements. 

I. INTRODUCTION

The formulation using moving coordinate system for eddy 
current analyses of moving conductor [1]-[3] is widely applied to 
the finite element analysis of electric machines. The advantages of 
the formulation can be considered as follows: 

(a) The oscillation of the solution caused by the high Peclet 
number [1], [3], [4] can be avoided. 

(b) The finite set of the matrix is symmetric [1]. 
(c) Eddy currents in heterogeneous moving material, for example, 

cage rotors of induction motors, can be calculated [3]. 

When the position of the moving parts is changed, re-meshing 
of the finite elements is required. In the conventional method using 
moving coordinate system, the mesh in the conductive region 
should be fixed and the re-meshing must be carried out at the other 
region. However, it can be considered that the appropriate finite 
element mesh in the conductor may vary due to the position. 

In this paper, we propose a novel method for eddy current 
analysis of moving conductor using the moving coordinate system 
and the adaptive finite element meshing at each position of the 
conductor. In the method, not only the finite element mesh in the 
nonconductive region but also the conductive region is changed 
automatically and properly at each time-step. Consequently, 
accurate results can be obtained with small number of finite 
elements. The proposed method is applied to solid and cage 
induction motors, which include homogeneous and heterogeneous 
moving parts respectively, to clarify the validity and the advantages. 

II. FORMULATION

The governing equations of the moving conductor introduced 
in the moving coordinate system are: 
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where A an � are the magnetic vector and the electric scalar 
potential, � is the permeability and � is the conductivity of the 
conductor. The time derivation term in (1), (2) can be discretized 
using the backward differential method [1]-[3] as  
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where �t is the time interval, x indicates a point on the fixed 
coordinate system, V is the velocity of the conductor, At+�t and At

are the unknown and the primary values, respectively.  
Fig.1 shows the re-meshing method at each time step in case 

of the conventional and the proposed methods. The time derivation 
defined by (3) at the conductive region is obtained by the potential 
at the point P and P’, whose distance is V�t. In the conventional 
method, the mesh in the conductive region is fixed and the re-mesh 
is carried out at the other region. In this case, the potential At in the 
conductive region can be obtained directly at the same node. On the 
other hand, in the proposed method, not only the mesh in the 
nonconductive region but also the conductive region is changed 
properly due to the error estimation at each time step. In this case, 
the potential At is obtained by the interpolate calculation using the 
interpolate function Nie of the element e as follows: 
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where At’ is the potential of the element e at the previous time step. 
When the conductor is surrounded by the region whose 

permeability is different, for example, cage rotors of induction 
motors, the element e should be selected properly. In this case, the 
space derivation of the magnetic vector potential is discontinuous at 
the boundary [3].  When the new node is generated at the boundary 
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Conventional Proposed 

Fig.1. Re-mesh due to movement. 
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with arch shape as shown in Fig.2, the interpolate function in (4) 
should be obtained from the element e1, not element e2 in case of 
the first order element.  

III. ADAPTIVE MESHING METHOD

   For the error estimation of the finite elements, the Zienkiewicz 
and Zhu error estimator [5] is applied. In order to decrease the 
number of the adaptive meshing iteration, the primary mesh of each 
time-step is obtained from the final mesh at the previous time-step 
[6] with minor modification. The error estimation and the 
re-meshing are also carried out at each nonlinear iterative step for 
decreasing the total number of the iterative calculations [7]. 

IV.  RESULTS AND DISCUSSION

   Fig.3 shows the adaptive finite element mesh due to the 
movement of the conductor in case of a solid rotor induction motor. 
It indicates that the finite element mesh in the conductor is modified 
due to the variation of the field distribution. Fig.4 shows the 
calculated result of the instantaneous torque of the motor. The result 
obtained by the conventional method with the fixed mesh is also 
shown. The proposed method gives almost identical results with the 
short calculation time and the small number of finite elements. It 
can be said that the proposed method can reduce the calculation 
time by using proper mesh with small number of finite elements at 
each time-step. 
   Fig.5 shows the eddy current distribution at the bar of a cage 
induction motor. It indicates the error of the distribution around the 
newly generated node P on the boundary between the rotor bar and 
the core when At is calculated form the potentials of the element in 
the core region. It is clarified that the proper element should be 
selected for the interpolate calculation as shown in Fig.2 when the 
conductor is surrounded by the different permeability material.  
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Abstract�The potential bene�ts of employing optimal

discretization�based re�nement criteria to achieve load bal�

ancing in parallel adaptive �nite element electromagnetic

analysis are considered� Speci�cally� the ability of this class

of adaption re�nement criteria to resolve an e�ective do�

main decomposition based on initial discretizations with

only relatively few degrees of freedom are examined� The

new load balancing method is evaluated with adaptively re�

�ned �nite element solutions for a range of electromagnetic

benchmark systems and practical adaption models�

Introduction

Adaptive �nite element analysis 
AFEA� for the elec�
tromagnetic simulationof various applications has become
increasingly important over the years� and is now a well�
established research area �����	 In particular� AFEA has
gained considerable attention for solving computationally
large problems more e�ciently than non�adaptive meth�
ods permit	 In general� �nite element solutions are ap�
proximate� their accuracy depends on the number of de�
grees of freedom 
DOF� used and how e�ectively they are
distributed throughout the problem space	 In addition�
the cost of solving a �nite element problem grows with the
number of DOF used in the discretization	 Consequently�
the most e�cient distributions of DOF are those that yield
su�ciently accurate solutions using the fewest free param�
eters ���	 Thus� one practical way to achieve this objective
is by using adaptive solution strategies that are capable
of intelligently evolving and improving e�cient distribu�
tions of DOF over the problem domain� by establishing
solution error distributions and selectively adding DOF
to the discretization to correct them	 Hence� the primary
bene�t of AFEA is the e�cient and accurate computa�
tional analysis of large continuum problems� for only a
relatively small fraction of the cost associated with non�
adaptive �nite element methods ���	

Despite the advantages of AFEA� the computational
e�ort required for the electromagnetic simulation of very
complex structures can still be prohibitive ���	 The main
di�culty is that a very large number of DOF are neces�
sary for computing accurate solutions of realistic systems�
su�cient DOF are required to both resolve the geometric

and material features of practical devices� and to repre�
sent the highly non�uniform �elds	 As a result� electro�
magnetic simulation of such systems can be intractable
within conventional sequential programmingmodels� even
when using AFEA	 Currently� one promising approach to
overcome this type of computational barrier is to combine
AFEA with high�performance computing 
HPC� meth�
ods� such as parallel and distributed simulations �����	

Combining AFEA with HPC methods to achieve higher
gains in e�ciency makes it possible to solve previously in�
tractable problems� however� major computational chal�
lenges exist for e�ective implementations	 Parallel and
distributed AFEA simulations introduce issues that do
not arise with simpler solution strategies ���	 In partic�
ular� adaptive algorithms evolve non�uniform discretiza�
tions that can make the task of balancing processor com�
putational work load more di�cult than with uniform
structures	 For example� this type of load balancing prob�
lem can be especially problematic for distributed pro�
gramming models when �nite element discretizations are
partitioned into subdomains� which are then assigned to
speci�c processors	 
This type of partitioning is also re�
ferred to as domain decomposition in the context of paral�
lel �nite element analysis	� Essentially� some subdomains
require more re�nement than others as a discretization is
adapted	 Thus� an initial discretization that is evenly dis�
tributed among processors in terms of workload� can lead
to a severe workload imbalance as the adaption progresses
towards more highly enriched discretizations ���	

Various types of load balancing approaches for AFEA
have been proposed ���	 However� one common drawback
is the high communication costs associated with assess�
ing the severity of the load imbalance� computing a more
balanced work load distribution� and redistributing the
improved work load among the available processors at a
given iteration of the adaptive process	 The purpose of
this contribution is to investigate the practical value of
an alternative approach of addressing the load balancing
problem for AFEA� which requires substantially less com�
munication overall	 Speci�cally� the ability of a class of
adaption re�nement criteria ��� to resolve an e�ective do�
main decomposition based on initial discretizations with
only relatively few degrees of freedom are examined	
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Optimal Discretization�based Load Balancing

Typically� remapping or redistribution of DOF to avail�
able processors is performed by load balancing algorithms
for AFEA� at various stages of the adaption process� in
order distribute the work load as evenly as possible� In
the case of remapping� a domain decomposition is recom�
puted in order to repartition the entire discretization into
subdomains that� ideally� represent equal amounts of com�
putation� Alternatively� DOF can be redistributed among
existing subregions in order to balance the processor work�
load� Sophisticated algorithms have been developed based
on both approaches over the past several years ���� How�
ever� the total communication�to�computation cost ratios
involved can still be quite high and reduce the overall ef�
�ciency of the AFEA process�
An alternative load balancing approach for AFEA�

which requires considerably less communication among
processors� is to predict an e�cient domain decomposition
for the entire adaption process based on a single initial dis�
cretization containing relatively few DOF� The main ad�
vantages of this approach are two�fold� it avoids having to
solve the load balancing problem repeatedly on large dis�
cretizations	 and inter�processor communication� for the
purpose of load balancing� is required only once� Clearly�
the e
ectiveness of this type of approach is strongly de�
pendent on its ability to predict how a coarse initial dis�
cretization will evolve throughout the adaptive process�
In this work� optimal discretization�based re�nement

criteria ��� are used to asses the relative solution error over
an initial �nite element discretization� during the early
stages of the adaptive process� Subsequently� subregions
are de�ned based on equally distributing the total esti�
mated solution error over each subregion� as predicted by
the re�nement criteria� Thus� if the number of subregions
created is an integer multiple of the number of available
processors� each processor can be assigned a partition of
the initial discretization with approximately equal esti�
mated solution error� Hence� each processor may then in�
dependently apply AFEA to its corresponding partition
until solution convergence is achieved� �Complete theoret�
ical and algorithmic details will be provided in the long
version of the paper
� The hypothesis that must hold
in order for this approach to yield a balanced work load
among processors� is that having approximately equal er�
ror in each partition of the initial discretization will result
in equal work for the processors in the ensuing computa�
tions� The validity of this hypothesis is examined with a
fundamental benchmark system in the following section�

Results

A simple ��D free�space example is presented �rst in
order to examine the e
ectiveness of new load balanc�

TABLE I
Percent of Total workload vs� Processor Number

Processor
Method � � � �

Uniform�non�adaptive ����� 	�
	� 	�
	� �����
Uniform�adaptive ����� ����� ����� �����
New approach ����� ����� ����� �����

ing approach for AFEA� This static benchmark system is
based on resolving the classical point singularity model in
free�space ���� The objective for this benchmark system is
to compute the functional value based on the resolution
of a radial neighborhood close to the point charge and
spanning a ����fold decay in electric scalar potential �full
analysis details will be given in the long version paper
�
The results for the ��D example are given in Table I� To

focus ideas� three mesh partitioning strategies for achiev�
ing load balancing are considered� The �rst approach�
labeled �uniform�non�adaptive�� is based on a uniform
partitioning of the initial mesh into subregions contain�
ing equal numbers of DOF� The second strategy �uni�
form�adaptive
� is based on uniformly partitioning the
discretization into subregions containing equal numbers of
DOF after several adaptive re�nements of the initial mesh
have taken place� Finally� the new approach is based on
using optimal discretization�based re�nement criteria to
partition the same mesh as for the second method above
into subregions of equal estimated solution error� as ex�
plained in the previous section� Evidently� the new ap�
proach is able to achieve a better workload balance among
the processors than the other two approaches� Full results
based on additional test systems and a range of practical
adaption strategies will be presented at the conference and
in the long version of the paper� along with a complete dis�
cussions of the �ndings� in order to better understand the
potential impact and merit of the concepts�
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Abstract – Finite element solution efficiency and accuracy 
can be directly affected by mesh quality. When employing h-
adaptive solution strategies, a mesh improvement stage is 
required in order to ensure high quality tetrahedra. The poten-
tial benefits and related costs of a family of new mesh smoothing 
techniques are investigated with benchmark  systems.
              

INTRODUCTION 

While finite element methods (FEMs) are presently 
employed extensively for electromagnetic analysis and 
design, the use of adaptive finite element methods (AFEMs) 
has increased considerably in recent years. Today, the focus 
is on the research and development of efficient and reliable  
3-D methods for the analysis of realistic systems [1]. The 
primary advantage of AFEMs is the accurate computational 
analysis of large continuum problems for only a relatively 
small fraction of the cost of non-adaptive FEMs [1].

Currently, many AFEMs employ h-type adaption models, 
which add elements to the mesh to improve a discretization. 
AFEMs incorporating h-type adaption models have been 
used successfully for various types of engineering 
applications.  In particular, for problems where singularities 
in the mathematical field solutions exist (such as those at 
sharp material edges and corners), h-type adaption models 
have proven to be quite effective, where a large number of 
smaller elements are needed close to the singularities, but 
fewer, larger elements suffice further away [1].  
 Conceptually, h-type adaptive refinement is straight-
forward; however, an effective implementation can be subject 
to practical limitations.  For example, the manner in which 
new elements are  defined, can affect the quality of the 
resulting mesh. Specifically, the formation of long, thin 
elements can lead to poorly conditioned finite element 
matrices, which, in turn, can compromise the accuracy of the 
solution or the efficiency with which it is computed.  
Therefore, considerable attention has been given to these 
issues over the past several years.  Accordingly, various mesh 
quality improvement strategies have been proposed recently 
in order to avoid the formation of poor quality elements, and 
their associated problems, which can occur as a result of h-
adaption [2-7]. Among the most promising mesh quality 
improvement methods for 3-D meshes are smoothing-based 
techniques [2-5]. In this work, a family of new smoothing-
based techniques are proposed for tetrahedral meshes, in 
order to examine their potential benefits and related costs for 
h-type adaptive finite element electromagnetic analysis. 

OPTIMAL MESH QUALITY IMPROVEMENTS 

  Mesh smoothing techniques have been shown to be 
effective in improving tetrahedral meshes [2-5]. These 
techniques reposition individual vertices within the mesh to 
improve local mesh quality without changing the mesh 
topology. Typically, several iterations of smoothing are 
performed to improve the overall quality of the mesh. Smart-
Laplacian smoothing and optimization-based smoothing are 
two fundamental techniques that have received much 
attention [2-5]. Smart-Laplacian smoothing repositions a 
vertex to the average location of the vertices connected to it 
by edges only if the quality of the local submesh is improved 
according to a specific quality measure [2]. This yields an 
improved, yet non-optimal local submesh. Optimization-
based approaches formulate the smoothing operation as a 
nonsmooth optimization problem, and use an analogue of the 
steepest descent method for smooth functions to maximize or 
minimize a given mesh quality measure [2,3,5]. This yields 
an optimal local submesh; however, computational 
experiments have shown that optimization-based approaches 
can be up to 10 times more expensive than smart-Laplacian 
smoothing [2]. 

In practice, the smoothing component of a mesh 
improvement system may be implemented as either a single 
technique or a combination of various smoothing approaches.
Combinations of smart-Laplacian smoothing and 
optimization-based smoothing have been shown to perform 
favorably for many types of  meshes [2,4]. The resulting 
improvement in mesh quality can be comparable to 
optimization-based smoothing performed alone, but at only a 
fraction of the cost [2,4]. In fact, it has been suggested  that 
combined approaches can produce higher quality meshes 
than pure optimization-based smoothing  [2].  

Several combined mesh smoothing approaches have been 
presented in the literature [2,4,5]. Freitag’s combined 
approaches C1, C2, C3 and C4 have been shown to be 
effective and efficient for improving mesh quality [2,4]. For 
each smoothing pass, the vertices in the mesh are examined 
and the type and order of operations performed on the 
individual vertices depends on characteristics of the local 
submesh. For example, in the C1 approach, if the poorest 
quality measure value in the submesh satisfies a user-defined 
threshold, smart-Laplacian smoothing is used; otherwise 
optimization-based smoothing is performed. In addition, if a 
floating threshold is employed, the threshold value is updated 
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after each smoothing pass. For instance, in the case of a 
strategy that maximizes the minimum dihedral angle, the 
threshold may be updated to the global minimum dihedral 
angle in the mesh plus a constant. (The impact of very small 
and very large dihedral angles is negative [4].) A major 
advantage of the floating threshold strategy is that the 
threshold value is automatically adjusted for targeting the 
extremal angles in the mesh.  

Upon examination of C1, C2, C3 and C4, the fundamental 
operations can be summarized as: (1) smart-Laplacian 
smoothing; (2) optimization-based smoothing; (3) smart-
Laplacian smoothing if the worst value does not satisfy the 
threshold; (4) optimization-based smoothing if the worst 
value does not satisfy the threshold; and, (5) optimization-
based smoothing if the worst value does not satisfy the 
threshold, otherwise smart-Laplacian smoothing. (Note: the 
worst value corresponds to the poorest mesh quality measure 
value within the local submesh, e.g., smallest dihedral angle).  
Thus, it is worthwhile to investigate the potential benefits and 
related costs of varying the smoothing technique from one 
smoothing pass to the next. In fact, many combinations of the 
five fundamental operations may be examined (a complete 
discussion is presented in the full paper). One such approach 
(D1), would proceed as follows: (3)-(5)-(4)-(3)-(5)-(4) (six 
passes with a floating threshold). The effectiveness of this 
sample new approach is examined in the following section. 

RESULTS 

A basic benchmark example is considered, in order to 
evaluate the potential benefits of the new smoothing 
approach D1.  The problem consists of a unit cube with an 
initial mesh of 25,688 tetrahedra: a standard problem for 
mesh quality analysis [2,4,5]. (Full analysis details will be 
given in the long version paper.) In practice, maximizing the 
minimum sine of dihedral angles of the incident tetrahedra 
has been shown to effectively eliminate extremal angles 
[2,4], and is used as an objective function in this example. 
The initial threshold value is set to 10  and is updated to the 
global minimal dihedral angle in the mesh plus 5 after each 
smoothing pass. Smoothing is performed over six passes.   

The results for the benchmark problem are summarized in 
Table I. Global minimum and maximum dihedral angles, a 
dihedral angle distribution and average time required to 
smooth each local submesh are presented. It is evident that 
D1 yields a significantly improved quality mesh. The quality 
is superior to C1, C2, and C3 for similar computational time. 
D1 and C4 yield comparable quality meshes, yet D1 is more 
than twice as fast. Fig. 1 shows the percentage of angles in 
each six degree bin (30 bins total). D1 seems to produce more 
equilateral tetrahdra than C4, while removing extremal angles 
equally well. Overall, the new approach is seen to provide 
significant benefits in terms of improving mesh quality at low 
computational cost. Additional techniques and related 
findings will be examined in the long version paper. 

TABLE I.   NUMERICAL RESULTS FOR  BENCHMARK

% Dihedral angles < % Dihedral angles > Case Min.
dihed.

Max. 
dihed.

6° 12° 18° 162° 168° 174° 

Time 
(ms) 

Init. 0.369° 179° 0.091 0.51 1.35 0.28 0.11 0.019 N/A 

D1 16.2° 158° 0 0 0.1 0 0 0 0.398 

C1 10.1° 164° 0 0.024 0.55 0.014 0 0 0.384 

C2 10° 164° 0 0.034 0.61 0.018 0 0 0.378 

C3 10° 165° 0 0.13 1.07 0.071 0 0 0.213 

C4 16.7° 158° 0 0 0.0071 0 0 0 0.888 

Fig.1. Distribution of dihedral angles. 
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Abstract A new two dimensional adaptive meshing method for 
the analysis of rotating machines is presented. The method takes 
model symmetries and the force distribution into account when 
refining the mesh. This allows for a more accurate determination of 
the cogging torque than using a standard adaptive scheme. A flat-
type permanent magnet motor has been modeled to show the 
effectiveness of the method.

INTRODUCTION

Computer simulation using the finite element method 
(FEM) is an important tool for the design of small highly 
efficient rotating machines. To optimize the calculation time 
for such models, it is usual to combine the FEM calculation 
with an adaptive meshing method. 

However, it is difficult to obtain accurate values for the 
torque when using the standard adaptive meshing procedures. 
This is because the mesh generated does not reflect any of the 
geometric periodicity or symmetry in the model. The resulting 
irregularity of the mesh makes it difficult to obtain a smooth 
waveform for the torque. Furthermore, the criteria used for 
mesh refinement usually does not consider the force 
distribution. 

This paper proposes a new adaptive meshing algorithm 
specifically designed for the analysis of rotating machines, 
which takes into account both the geometric features of the 
model and the force distribution. 

ANALYSIS PROCEDURE

The proposed two dimensional adaptive scheme uses an 
augmented error estimator, which uses the nodal force[1] 
distribution in addition to standard error estimation[2] to 
control the mesh refinement. This is combined with a method 
to ensure that the resultant mesh adheres to any symmetries or 
periodicities in the model. 

The proposed method is constructed by the repetition of a 
two-dimension mesh coupling method, magnetic field 
analysis, and the proposed adaptive scheme. 

Two Dimension Mesh Coupling Method 

The meshes for the rotor and stator are coupled using a 
Delaunay triangulation procedure[3]. The air gap is re-
meshed at each rotor position during the calculation. Since 

the air gap mesh is a normal FEM mesh, it can be refined 
using the adaptive scheme. This technique also requires less 
memory than some alternative schemes such as the boundary 
element method (BEM)[4]. 

Error Estimation for Adaptive Meshing Method 

During adaptive refinement, an error estimate is found for 
each element in the mesh from the FEM solution. Elements 
with a large error are refined and the FEM calculation 
repeated. The error estimator used in this work is based on 
that described in [2], however, it is supplemented by a 
measure based on the nodal force distribution, as described 
below. 

Estimation of Analysis Error Using Nodal Force 

The torque is calculated from the sum of the forces on the 
mesh nodes as found using the nodal force method[1]. To 
improve the accuracy of the nodal force calculation we try to 
limit the change in force distribution across a single element. 
If the force on two of the nodes of an element differs by more 
than a present value, then the element is marked for 
refinement, as shown in Fig. 1. 

Fig. 1. Nodal forces that are smoothed by divided element

Fig. 2. Periodic and Symmetric mesh 
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Fig. 3. Flat-type permanent magnet motor

Generating a Periodic and Symmetric Mesh 

To generate periodic and symmetric meshes, regions of the 
model are identified and the mesher ensures that the resulting 
mesh is periodic and symmetric in these regions as shown in 
Fig. 2. While this restricts the division that can take place, it 
is an effective technique for reducing the numerical error. 

RESULTS

The proposed method has been applied to a flat-type 
permanent magnet motor, shown in Fig. 3. The magnet is 
designed to reduce the cogging torque and the teeth are 
slotted to further reduce the cogging torque. 

Fig. 4 shows the cogging torque calculated using the 
proposed method, and compares it with results found using 
standard adaptive refinement that uses only the error criteria 
for refinement. These results are for the second adaptive step. 
The waveform of the cogging torque calculated using the 
proposed method is both cyclic and symmetric. 

Fig. 5 shows the convergence of the different adaptive 
schemes. The result for the proposed method after 6 steps 
(606,072 elements) was taken as the reference value, T, of 
the cogging torque and the “error” for the schemes found 
using

( )
θτ

θττ

d

d
Error T

T

T

T−
=

0

2

0

2

 ,                                   (1) 

where is the cogging torque,  and T is one period of the 
cogging torque waveform. 

The use of the nodal force error estimator can be seen to 
improve the performance of the adaptive method, especially 
in the latter stages of refinement. The standard scheme only 
produces a small amount of refinement at each step after the 
third. This is clearly inefficient since many adaptive steps are 
required. Fig. 5 also shows that using a symmetric mesh also 
improves the accuracy of the calculation. 

CONCLUSION

This paper has proposed a new meshing method for the 

analysis of rotating machines. 
By taking into account model symmetries and the nodal 

force distribution, the method is able to produce meshes 
which allow the accurate determination of the cogging torque.  

Fig.4. Cogging torque calculated using different adaptive schemes after 2 
adaptive steps. 

Fig.5. The accuracy of the cogging torque for the different adaptive schemes 
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Abstract � A novel finite element mesh regeneration method is 
presented for 3D shape optimization of electromagnetic devices. The 
method has its theoretical basis on the structural deformation of an 
elastic body. When the shape of the electromagnetic devices changes 
during the optimization process, a proper 3D finite element mesh can 
be easily obtained using the method from the initial mesh. For the real 
engineering problems, the method guarantees a smooth shape with 
proper mesh quality, and to keep a same mesh topology with the initial 
mesh. Application to the optimum design of an electromagnetic 
shielding plate shows the effectiveness of the presented method. 

INTRODUCTION

Optimal shape design is very important for improving the 
performance of electromagnetic devices. During the last 
decade, both the deterministic and non-deterministic methods 
are developed and successfully applied to engineering design 
problems [1]. The optimal shape design of electromagnetic 
devices repeats the processes of performance analysis, shape 
modification and mesh regeneration according to the 
optimization algorithm till a desired performance is obtained. 
In this reason, it is necessary to integrate a finite element 
mesh generator and optimization algorithm with a finite 
element performance analysis system for achieving a variety 
of designs automatically and problem independently.  

The forgoing researches on the mesh modification method 
in the optimal shape design might be classified into two types 
[2]. For the former, the directions of movement of each nodal 
point are specified according to the shape change, while the 
topology of the finite element connectivity was fixed as the 
initial one. This approach failed to yield the optimum design 
in many problems by crashing elements or destroying 
convexity of finite elements if an appropriate direction of the 
mesh movement is not specified by predicting the final shape 
in advance [2]. In the later case, the interior nodes are 
generated automatically by certain kinds of interpolation, e.g., 
line interpolation. This method may lead to severe mesh 
distortion. Another mesh modification method, introduced by 
Choi in the structural optimization, has its theoretical basis on 
the deformation theory of the elastic bosy under the stress [3]. 
The structural consistency of the material guarantees smooth 
shape contours as the elastic body deformed. If the structural 
deformation of the shape is obtained by a finite element 
solution using a certain discretization, the deformation of the 
surface results in an evenly distorted mesh of the body. 
Therefore this mesh modification method can be used for the 

mesh regeneration of constant topology. Weeber used such 
idea in 2D shape optimization of electromagnetic devices [1]. 

In this paper, after the simple review of 3D stress analysis, 
a novel 3D finite element mesh relocation method for optimal 
shape design of electromagnetic device is described.  

3D MESH RELATION USING STRUCTURAL DEFORMATION THEORY

The strain vector of an elastic body in 3 dimensional 
structural analysis is defined as follows [4]: 

, , , , ,
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where the displacement vector is defined as follows: 
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a , and iN

is the nodal shape function. 
The relationship between the strain and stress for the 

linear elastic material is given as [4]: 

( )0 0� � � �� � �D (3)

where 0� and 0� are the initial residual stress and initial 
strain, respectively, and the stress � is  

T
zxyzxyzyx ][ �������� (4)

and the corresponding strain is � �
T

zxyzxyzyx �������� ,
and D is the elasticity matrix contains modulus and 
poisson’s ratio. 

Applying finite element method with tetrahedral elements 
to (1) and (3), the matrix equation is obtained as follows: 

� � ][][ faK �                              (5) 

where � � � �
T

N1 a,,aa �� is the displacement of each node, 
][f is the forcing load vector, and ][K is the stiffness 

matrix determined by the geometry and material constants of 
the elastic body. 
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Equation (5) is very similar to that of 3D static anisotropic 
magnetic analysis by using nodal element. The consistent and 
interrelated property of the deformations in an elastic body 
can be regarded as a design increment field. In this paper it is 
used for the mesh relocation during the optimal shape design 
of electromagnetic device by writing (5) as  

[ ]{ } { }xx� �K f (6)

where [ ]K is the global stffiness matrix for stress analysis, 
{ }x� is the nodal displacement, that is the amount of 
relocation of the nodal coordinates { }x , and { }xf is fictious 
load force to control the mesh density appropriately. The 
perturbation of the boundary can be simply considered as a 
displacement at the boundary. With no additional external 
forces and a given displacements at the boundary, (6) can be 
used to find the displacements of the whole nodes. Equation 
(6) can be rewritten as follows in segmented form: 

�
�

�

�
�

�
�

�

	




�

�




�

�

�
�

�

�
�

�

0
b

d

b

dddb

bdbb f
x
x

KK
KK

(7)

where � �bx� is the known perturbation of nodes on the 
boundary, � �dx� is the unkown nodal displacement vector 
for the interior nodes, and � �bf is the fictitious boundary 
force acting on the boundary. The unknown interior nodal 
displacement vector can be obtained from the following 
equation: 

� �� � � �� �bdbddd xKxK ���� (8)

NUMERICAL EXAMPLE 

In order to investigate the applicability of the proposed 
method to the 3D shape optimization, a simple block model is 
taken. During the application, the fictious load force is set to 
zero, and E and � are set to 0.5, and 0.3, respectively. When 
the nodal points in a line on the upper surface move, the 
regenerated meshes are compared, in Fig.1, for the different 
boundary conditions in the structural analysis. From the 
figure, where the nodal displacement of the moving node is 
30% of the dimension of the model block, it can be seen that 
proper meshes with reasonable mesh quality are obtained 
with various boundary conditions. It can also be seen that 
when the finite element mesh is regenerated using the 
relocation method, the boundary surface remains smooth. 
However when the nodal displacement is quite big(the 
displacement is 60% of the dimension of the block), as shown 
in Fig. 2, the regenerated meshes are distorted, and the mesh 
quality is not to be acceptible. 

In the version of full paper, an application to the shape 
optimization of electromagnetic device will be included.  

(a) when the upper surface is free to move and the four sides are 
fixed. 

(b) when the upper, four sides are free to move.
Fig.3 The regenerated finite element meshes for different boundary 

conditions in structural analysis when the nodal displacement is small. 

(a) when the upper surface is free to move and the four sides are 
fixed. 

(b) when the upper, four sides are free to move. 
Fig.4 The regenerated finite element mesh when the nodal displacement 

is quite big.  
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Abstract  We have proposed the automatic mesh generator for 
hexahedral elements previously. This technique can be applied to almost 
all models. However, if it is applied to a cylindrical model, the mesh, 
which contains many flat elements, is generated. Using such mesh, it is 
time-consuming to perform finite element analysis with such mesh and 
its result may not be good accurate. Therefore, an automatic mesh 
generator for cylindrical model is required. In this paper, a hexahedral 
mesh generation method for cylindrical model is proposed. In this 
method, by using cylindrical coordinate, the mesh with well-shaped 
hexahedral elements is generated even for complicated analysis domain. 

I. INTRODUCTION

In order to perform finite element analysis (FEA), the 
analysis domain has to be divided into finite elements. For 3-
D domain, the mesh generation is, in general, very laborious 
and time consuming, compared with 2-D domain. Therefore, 
3-D FEA is prevented from practicability in many fields. 
Hence, it is desirable to develop an automatic 3-D mesh 
generator. An automatic mesh generator commonly generates 
tetrahedral (Tet) mesh. Tet mesh can be easily generated for a 
complicated analysis domain because of existing a 
mathematical approach. However, the number of Tet 
elements is about 5 times as many as that of hexahedral (Hex) 
elements with the same number of nodes. Consequently, the 
FEA with Tet mesh consumes the computation time. On the 
other hand, if the number of Tet elements is decreased in 
order to reduce the computation time, we cannot obtain the 
result with enough accuracy. Accordingly, there is a large 
interest in the automatic generation of Hex mesh for finite 
element electromagnetic field analysis mainly due to getting 
enough accuracy and good convergence. We have previously 
proposed an automatic mesh generator [1] based on Cartesian 
coordinate for hexahedral elements, whose technique can be 
applied to almost all models, such as transformer, actuator, 
and so on. 

Currently, the rotating machines are often analysed by 
using FEA. When the model of the rotating machine, i.e. 
motor and generator, is subdivided into a mesh, it is required 
to be partly fine, such as air-gap, and the elements of any 
other parts may not be such fine. Of course, the previously 
proposed method can be applied to the rotating machines. 
However, the mesh, which is obtained by using the previous 
method, contains many flat elements. The mesh with a large 
number of flat elements leads to deterioration of the solution 
accuracy and to slow convergence. Then, we should modify 
the previous method to reduce the number of the flat elements 
for cylindrical model. Hence, we propose an automatic 
hexahedral mesh generator for cylindrical models, which is 
based on the previous method. 

II. FLOW OF PROPOSED SYSTEM

The main flow of the proposed system is shown in Fig. 1. 
It consists of: 

Step 1. The input data of the proposed method are the 
geometrical data (“Shape Model”) and the mesh density data, 
which is used to control the mesh density in the analysis 
domain. The mesh density data are easily given at vertices by 
using the GUI system [2]. 

Step 2. The model is split into two parts. One is “Axis
Part Model”, which is the neighbourhood around the rotation 
axis and includes the rotation axis. The other is the rest of the 
whole model (“Cylinder Part Model”). These parts are 
individually divided into Hex mesh in the following step. 

Step 3. The Cylinder Part Model, which exists in xyz-
coordinate (Cartesian coordinate), is changed to “Rectangular
Part Model”, which exists in ’z-coordinate (Cylindrical 
coordinate). For generating well-shaped elements, -
component is transformed to ’-component and this 
transformation is explained later. 

Step 4. By using the previously proposed method [1], the 
Rectangular Part Model is divided to Hex mesh. This divided 
model is called “Divided Rectangular Part Model”.

Step 5. By transformation from ’z-coordinate to xyz-
coordinate, the Divided Part Rectangular Model is 
transformed back to “Divided Cylinder Part Model”.

Step 6. Two parts, which are split in Step 2, are joined. 
Before joining, the Axis Part Model, which includes the 
rotation axis, has to be divided into Hex mesh. 

rotation axis

Shape Model Axis Part 
Model

Cylinder Part 
Model

Rectangular 
Part Model

Shape Model Divided Axis 
Part Model

Divided Cylinder 
Part Model

Divided Rectangular 
Part Model

Input geometrical 
data and density data

Transform from xyz-
coordinate to ’z-coordinate

Split into two parts

Join two parts Divide rectangular 
model using the 
previous method[1]

Transform back from ’z-
coordinate to xyz-coordinate

rotation axis

Shape Model Axis Part 
Model

Cylinder Part 
Model

Rectangular 
Part Model

Shape Model Divided Axis 
Part Model

Divided Cylinder 
Part Model

Divided Rectangular 
Part Model

Input geometrical 
data and density data

Transform from xyz-
coordinate to ’z-coordinate

Split into two parts

Join two parts Divide rectangular 
model using the 
previous method[1]

Transform back from ’z-
coordinate to xyz-coordinate

Fig. 1. Simplified algorithm for the proposed method. 
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 In this method, a well-shaped mesh for cylindrical model 
is obtained due to transformation from xyz-coordinate to ’z-
coordinate.  

III. TRANSFORMATION OF COORDINATE

Before the transformation of the coordinate, the model is 
split into two parts; a small part including the rotation axis 
(Axis Part Model) and the rest of the analysis domain 
(Cylinder Part Model). Because the rotation axis cannot 
transform from xyz-coordinate to z-coordinate with one-to-
one correspondence. Then, the coordinate of the Cylinder
Part Model is transformed from xyz-coordinate to z-
coordinate. Here, the unit of -component is radian in this 
model, however the unit of r- and z-component is meter. 
Consequently, for generating well-shaped elements, -
component is transformed to ’-component like below: 

2
maxr' ⋅= ,                                        (1) 

where rmax is the maximum value of r-component in the 
model. Since the maximum value of and r are the almost 
same, the shape of the whole model in ’z-coordinate 
becomes good (see Fig. 2). And after this process, the 
Rectangular Part Model is divided into Hex mesh by using 
the previously proposed method. 

IV. ADJUSTMENT PROCESS

In order to join two parts; Axis Part Model and Cylinder
Part Model, the position of nodes on the joint surface have to 
be in agreement (see Fig. 3). Therefore, the odd numbers of 
nodes are generated on arc of the joint surface, like Fig. 4. 
Figure 4 represents an example of 2D quadrilateral elements 
on the joint surface of the Axis Part Model. And the nodes on 
arc alternatively connect the rotation axis. Consequently, the 
quadrilateral mesh is generated. On the other hand, on the 
joint surface of the Cylinder Part Model, the same numbers of 
nodes are generated, so that it is easily able to join the Axis
Part Model and the Cylinder Part Model. After joining, the 
final subdivision map is obtained (see Fig. 5). 

V. APPLICATIONS

To verify the usefulness, the proposed method was 
applied to the rotating machine shown in Fig. 5, which was 
divided into 38,069 elements with 42,356 nodes. And, the 
CPU Time of mesh generation was 160 seconds 
(CPU:Pentium4 2.0GHz MEMORY:2048MB). As shown in 
Fig. 5, we confirmed that a suitable Hex mesh with the 
desired mesh density was generated.  

VI. CONCLUSIONS

In this paper, we propose development of the previous 
method for cylindrical models. The key feature of this method 
is to transform from xyz-coordinate to z-coordinate. To 
verify the usefulness, the proposed method was applied to the 
rotating machine. In the final subdivision map, the well-
shaped mesh is obtained for cylindrical models. In this 
method, the number of the division doesn’t depend on the 
rotating degrees on the air-gap. Therefore, we would like to 
decide the number of the division partly.  
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Fig. 3. Two models are joined.
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Fig. 5. Final subdivision map. 
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Abstract—A nonlinear eigenvalue problem appears in Magnetohydro-
dynamics(MHD) equilibria determined by solving the Grad-Shafranov
equation numerically. After linearization of the nonlinear equation, it-
erative procedure for the solution of linearized equation spends most part
of calculation time. We introduced multigrid method(MGM) instead of
the conventional method for solving the linear equation. In this paper,
the parallel processing by using Message Passing Interface(MPI) on PC
cluster is adopted for the MGM to achieve higher performance.

I

The nonlinear eigenvalue problem often appears when the
magnetohydrodynamics (MHD) equilibrium configurations of
toroidal plasma are determined by solving the Grad-Shafranov
equation numerically. Because of the nonlinearity, the iterative
procedure has been so far employed to the solution of the prob-
lem and the procedure includes solving linearized equation in
each steps. Therefore, the iterative procedure occupied most of
execution time to solve the problem.

The fast Fourier transform and cyclic reduction methods re-
quire only O(N2 log N) operations when applied to the bound-
ary value problem of two-dimensional partial differential equa-
tion (PED). Therefore, these methods are nearly optimal one as
the solver of PDE.

The multigrid method (MGM) is comparable to the above
rapid methods in execution speed. The purpose of the present
study is to make the numerical character of the multigrid
method elucidate and to apply the MGM to application of non-
linear eigenvalue problem procedure for determine the MHD
equilibrium configuration of low-aspect-ratio toroidal plasma
numerically. Furthermore, the parallelize MGM by means of
the Message Passing Interface (MPI) in a simple case is inves-
tigated.

MHD E C

The low-aspect-ratio toroidal plasma is sustained in the
metallic vessel, which is called a flux conserver. In order to
supply the plasma with the toroidal flux, a center conductor
is inserted along the geometric axis and the electric current is
applied along it. Since the equilibrium configuration of the
plasma is axially symmetrical, we can determine it by solving
Grad-Shafranov equation in the z− rplane, where z−axis is the
symmetry axis in the cylindrical coordinate system (z, r, φ).

In this study, we use an analytic region Ω as drum-type of
domain which size is [0, 1] × [ri, ri + 1] and the region Ω is

bounded by boundary Γ. Here, ri denotes the radius of the
center conductor.

We assume that the plasma exists only in the region Ω and
also assume that the magnetic fields produced by the plasma
do not extend outside of Γ[3].

Under these assumptions, the Grad-Shafranov equation can
be written in the form,

−L̂ψ = f (λ, r, ψ) , (1)

where ψ is the magnetic flux function and L̂ is the Grad-
Shafranov operator. Further, f (λ, r, ψ), is given function sat-
isfies f (Cλ, r, ψ) = C f (λ, r, ψ) (C, λ = const.). From the above
assumptions, the boundary condition is written as ψ = 0 on Γ.

The Grad-Shafranov equation and its associated boundary
conditions constitute a nonlinear eigenvalue problem with an
eigenvalue λ.

After linearlized, the iterative procedure with two steps pro-
vides the solution of the problem. In the first step, the linear-
lized equation is solved by use of ordinary relaxation meth-
ods. Next, the approximate eigenvalue is corrected in the sec-
ond step. Until both the eigenvalue and the flux function con-
verge, above two steps are repeated. The procedure is itera-
tive method, it take much CPU time to solve the problem and
the procedure of solving linearized equation in each step takes
most of the time. Consequently, we adopt the MGM to the first
step of the iterative procedure to obtain better performance[5].

P MGM MPI

In this section, let us parallelize the MGM by use of Message
Passing Interface(MPI) [4] to get more performance.

MPI is the standard and portable application interface for
message communications among the nodes of which a dis-
tributed memory multiprocessor consists.

In practice, MGM is implemented on PC cluster by using
MPI. Table I shows the environment of evaluation in this study.

Here, let us solve a 2D nonlinear eigenvalue problem by use
of parallelized MGM.

Fig. 1 shows the schematic view of the assignment for 16
processing units (PUs) when the number of grid point per di-
mension is N = 23. On the occasion of the calculation on
the finest grid, i.e. N = 23, the PU interchange the values
between the adjoin grid point along the boundary of PU. At
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TABLE I
E (    )

CPU Pentium2 350MHz
Memory 128MB
OS FreeBSD 4.3-release
# of PCs 2 – 128
Network 100Mbps Ethernet

0

1

2

3

4

5

6

7

10

11 15

14

13

8 12

9

0

0 1 2 3 54 6 7 8

1

2

3

5

4

6

7

8

x

y

Fig. 1. The schematic view of the assignment for PU

the next step, the values are mapped to the coarser grid, i.e.
N = 22, and calculated on the even number of grid point. Con-
sequently, calculation must go over the odd number grid points
and PU must interchange the values on the even number grid
points. Finally, on the coarsest grid, i.e. N = 2, the number of
grid point is smaller than the number of PUs, therefore, the PUs
including the grid point need to communicate each other over
the other PUs. Since the communications occur frequently and
degrade the performance, in this study, data is gathered and
calculated in a PU on the coarsest grid.

On each level in MGM, Red-Black Gauss-Seidel method is
adopted for the sweeper to obtain higher parallelism, and the
communications between processes are overlapped with the
calculations possibly.

Fig. 2 shows that 128−PU demonstrates the best perfor-
mance in case of N = 212. As the number of PUs increase, the
larger problem can be solved by means of this environment.

Fig. 3 shows that the speedup ratio is plotted as functions
of the number of PU in case of N = 210. The result by use of
32PU shows 7.6 times faster than that by use of 2PU, however,
in case of 64–128PU, speedup ratio is degraded. The reason is
that the communication time occupies most of total execution
time as the number of PUs increases. In fact, in case of N =
210, though the communication ratio is about 25% by use of
8PU, that occupies about 75%, 90% by use of 64PU, 128PU
respectively. In large division number, since the relative cost
of communication is reduced, speedup ratio can be improved
shown as Fig. 2.
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Fig. 3. The speedup ratio as functions of number of PU in case of N = 210

C

In this paper, we investigated the application of MGM to
solution of MHD equilibrium. Furthermore, we parallelized
the MGM by use of MPI on PC cluster.

We applied the MGM for the procedure of nonlinear eigen-
value problem, and solved the 2D nonlinear eigenvalue prob-
lem by use of parallelized MGM on PC cluster up to 128PU.
As a result, 128PU demonstrated the best performance in case
of N = 212, and the problem in case of N = 213 can be solved
by use of 128PU. Also, the calculation in case of 32PU showed
7.6 times faster than that of 2PU.
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Abstract— To take into account movement in time-stepping
finite element simulations, a possible method is to remesh the
changing parts of the geometry. A remeshing technique using
bubbles is presented. Attention is paid to the computational cost
of the algorithm. Some methods are proposed to reduce it.

I. INTRODUCTION

The idea of the bubble meshing technique is to use a
physical model that defines a satisfying node distribution, and
to couple it to an algorithm that creates the triangulation,
usually based on the Delaunay criterion. This method is
generally used for mesh generation or optimization, and it has
proven its ability to generate high quality meshes [1][2].

Taking into account the movement of parts of the geometry
is essential, when simulating the behavior of electromechanical
actuators. Because mesh modifications may introduce numer-
ical noise in the solution, it is important to guarantee a good
mesh quality as the geometry changes. Some previous work
showed the interest of using bubbles in a remeshing procedure
[3]. However, such physically-based meshing algorithm may
be time consuming. This article presents a bubble remeshing
technique, and proposes several methods that lower the time
devoted to the movement of bubbles.

II. A PHYSICAL MODEL FOR THE MESH

A. Bubble definition

The
�

nodes of the mesh are considered as particles that
interact with each others. The node � of coordinates �� � is
submitted to the force �� � defined as follows:

�� � � ��
� 	
 � � � � �
 � � � � � � �
 � � � �� � � �� �� �� � � �� � � � (1)

where � � � is the force between particles � and � . The influence
of the node � is local and isotrope. That is why it is represented
by a bubble centered on the node and of radius � � . The force

� � � is chosen to be purely repulsive. It is set to zero when� �� � � �� � � � � � � � � � � � . With this kind of force, the set of
bubbles tends to occupy the free space as a perfect gas would
do.

Only bubbles that are interior of the domain can move.
Bubbles on the domain frontiers should then act as walls that

constraint the bubbles to stay inside. For this reason the action
of a frontier bubble is twice as much as for an interior bubble.

B. Node ditribution adaptation

The motion equation of bubble � is written as:

� � � � �� �
� � � � � � � �� �

� � � �� � � � � (2)

where � � is the bubble mass and � � a damping coefficient.
To simulate the movement of the bubbles, a set of

�
second-

order differential equations has to be considered. It is solved
using a classical Runge Kutta method.

Since the bubble radii are directly linked to the mesh
element size, it is important to control their distribution. Two
schemes based on bubble neighborhoods have been tested,
producing different behaviors of the bubble set. For example,
it can be interesting to let the bubble grow as they move away
from the boundaries [3].

C. The remeshing procedure

The proposed procedure is shown in Fig. 1. For small
displacements of the mobile part, it leads to an “elastic” mesh
in which the nodes are repositioned. For larger movements,
moving the nodes is not sufficient and topological changes
occur in the mesh. As shown in Fig. 2, the procedure tends to
localize these changes close to the moving part.

III. STRATEGIES FOR COST REDUCTION

Moving the bubbles is the most time consuming part of the
remeshing procedure. What follows focuses on this part of the
algorithm and discusses some techniques that helps to reduce
its cost.

A. Bubble neighborhood

Because bubble forces are only local, the summation in
equation (1) should be restricted to the neighbors of bubble � .
This is possible only if this neighborhood information is
available. Evaluating it is in fact the most time consuming
part. Therefore, a criterion has been set up, indicating when
it is necessary to update it during the bubble movement, thus
reducing the number of evaluations.
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First mesh
- Classical Delaunay triangulation
- Creation and movement of bubbles
- Triangulation with newly positionned nodes

Geometry change
- Bubbles become ill distributed

Remeshing
- Movement of bubbles using:

population control

- Triangulation with newly positionned nodes

 radii adaptation

Fig. 1. Remeshing procedure based on bubbles

(a) Initial mesh (b) Geometry is changed

(c) Bubbles are moved (d) New mesh

Fig. 2. A 2D remeshing example using bubbles

B. Freezing the bubbles

Especially in large geometries, all the bubbles do not reach
a force-balancing configuration at the same time. Hence, it
is usefull to freeze bubbles that have reached an equilibrium.
As shown in Fig. 3, the number of bubbles drops during the
integration and nearly 50% of time can be saved using this
scheme.

C. Creating subsets of bubbles

An idea inspired by the “coarse graining” technique used
in physics [4], is to divide the bubble set into subsets in
which a localized equilibrium is searched for. The obtained
overall configuration is then close to the global equilibrium.
When compared to a global resolution, this method leads to
lower computational times. It is possible to find an optimal
number of subsets. The number of interior bubbles of a subset
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Fig. 3. Number of active bubbles during their movement

should be greater than a bubble neighborhood, and smaller
than the number of frontier bubbles of the subset. Moreover,
each subset being treated separately, parallel computing can
be used.

D. Results

The preceding techniques have been implemented to im-
prove the existing algorithm. The Fig. 4 displays the obtained
time reduction. The main gain have been achieved by reducing
the cost of the bubble neighborhood calculation and updating.
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IV. CONCLUSION

Using bubbles allows to adapt the mesh to the geometry
changes during time-stepping simulations. The proposed pro-
cedure, applicable in both 2D and 3D situations, allows to have
a good control on the node distribution and generates smooth
changes of the mesh. Computational time of the algorithm
has been reduced. More improvements are still needed to treat
large and complex geometries.
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Abstract – A new family of triangles and tetrahedra are proposed for   
h-p adaptive finite element analysis (AFEA), in parallel and distributed 
processing computational environments.  The elements are constructed 
based on very-high-order, arbitrarily-piecewise-continuous, polynomial 
bases, which span the full range of local mesh refinements, and a broad 
variety of the primary local distributions of degrees of freedom (DOF), 
attainable through conventional and irregular h-p adaptive refinements.  
Irregular cut continuity constraints are used to maintain the conformity 
and modeling integrity of the new h-p elements across the external edges 
(faces) of the triangles (tetrahedra) to facilitate the seamless introduction 
and use of these elements in classical AFEA formulations.  The potential 
benefits and related costs are explored for electromagnetics applications. 

INTRODUCTION 

The use of AFEA techniques for computationally modeling 
and simulating the performance characteristics of engineering 
devices and continuum systems has grown increasingly wide-
spread over the last ten years, and the study and development 
of AFEA methods for practical engineering applications now 
represents a rather mature and well-established research area 
[1],[2],[3].  Early advances in the design and development of 
finite element basis functions have facilitated the efficient use 
of classical Lagrangian elements for stable, well-conditioned 
h-adaption, and supported the formulation of hierarchal finite 
elements, for effective and reliable p-adaption [3],[4].  More 
recent research has resulted in the development of “irregular” 
(or irregular-cut) elements [5],[6],[7].  Taken together, these 
advances both promote the concept of, and provide the main 
foundations for, a generalized h-p finite element. 

Finite elements are most commonly categorized in terms of 
the type(s) of DOF that they are able to represent, within the 
specific geometric region spanned by the individual element 
(strong definition), or over a connected multi-element region 
which is spanned by a partial mesh that includes the element 
(weak definition).  For these definitions, it is key to associate 
points, edges and surfaces of derivative discontinuity in the 
model, over the region under consideration, with h-type DOF; 
while, the p-type DOF should be understood to represent the 
polynomial order(s) of the differentiable modeling functions, 
that span the element(s) associated with the model, within the 
considered region.  By this classification, it is noteworthy that 
classical high-order Lagrangian triangles and tetrahedra meet 
the requirements of both “weak” h-type elements and “weak” 
p-type elements, and by extension, also “weak” h-p elements.  
In addition, high-order hierarchal elements can be categorized 

as “weak” h-type, “strong” p-type and “weak” h-p type.  But, 
neither Lagrangian nor hierarchal elements satisfy the criteria 
established for “strong” h-type elements, or “strong” h-p type 
elements.  A very good example of a “strong” h-type element 
is the “nested tetrahedron”, however this element is limited to 
first-order modeling, and therefore falls short of the standards 
stipulated for a “weak” p-type element, or a “weak” h-p type 
element [8].  The purpose of this contribution is to introduce 
a new family simplex elements for AFEA, which meet all the 
requirements of the “strong” h-p type definition.  It should be 
noted that by the hierarchy of the element type classification, 
these new elements will also satisfy all the criteria required of 
“strong” h-type and “strong” p-type elements.  Further, these 
new h-p elements will be shown to possess a number of key 
attributes which render them highly amenable to parallel and 
distributed processing environments. 

MATHEMATICAL FORMULATION

The mathematical development and derivation of “strong” 
h-p type triangles and tetrahedra is highly detailed, somewhat 
abstract and much too involved for a condensed presentation.  
Therefore, only a simple introduction to the most salient point 
is presented; the complete description of the formulation will 
be reported at the conference, and included in the long paper. 

The most important aspect of the “strong” h-p type element 
formulation is the choice, structuring and management of the 
basis functions.  One straightforward approach is to associate 
a separate hierarchal basis with each “sub-element” produced 
by an h-type discretization enhancement of the h-p element, 
e.g., for m “sub-elements” the h-p element basis becomes [3]:  

� �

T
TTT )()()( emeie1e NNNN ���           (1) 

Then, the essence of the formulation reduces to choosing and 
implementing how these sub-bases will interrelate.  There are 
many options available, which make “strong” h-p elements a 
very flexible and powerful modeling tool for practical AFEA. 

The concurrent processing ramifications of the formulation 
arise when AFEA initial meshes are constructed of “strong” 
h-p elements, and all adaptive refinements are only applied as 
local discretization enhancements within them.  In this case, a 
natural domain decomposition is implied by the initial mesh, 
and a broad range of powerful parallel strategies applies [9].  
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ILLUSTRATIVE RESULTS

The correctness and effectiveness of the new family of h-p
type finite elements have been verified numerically, through 
investigative tests involving a representative range of AFEA 
applications.  One simple yet instructive example is described 
in Figs. 1 and 2, which illustrate the 3-D electrostatic analysis 
of a spherical capacitor using a “strong” h-p type tetrahedron.  
The ideal device model consists of two concentric, spherical 
conductors, separated by a full-thickness, homogenous, linear 
dielectric shell (�r = 6).  The inner conductor is a solid sphere 
of radius r

�

; the outer is a hollow spherical shell with an inner 
radius r

�

= 100 r
�

.  Fig. 2 describes the initial and h-p refined 
meshes for 1/24 of the full spherical geometry.  The objective 
of this study was to resolve the capacitance of the structure.  
The results are summarized, in an abridged form, in Table I. 

It is noteworthy that a “strong” h-p element automatically 
facilitates the purely local discretization enhancements of the 
inner tetrahedron, without any affect on the conformity of the 
mesh across the shared (internal) element face.  If traditional 
elements were used, the refinement of the inner tetrahedron 
would propagate the subdivision of neighboring tetrahedra to 
preserve the geometrical conformity of the model; and even if 
“irregular” tetrahedra were employed throughout the model, 
the prescribed refinement of the inner element would require 
the use of supplementary “continuity constraints” to preserve 
the integrity of the model [6].  Finally, it is important to note 
that the full modeling advantages of irregular-cut h-p AFEA 
are preserved with the new h-p elements:  the accuracy of the 
new method (6% error level) is only matched by that attained 
using a uniform 8-th order mesh (5.7% error level), which is 
only available at a far greater computational cost.  A range of 
h-, p-, and h-p results for “strong” h-p triangles and tetrahedra 
will be reported at the conference and in the long paper.       

x

z

y0

Fig. 1.  Analysis model domain (1/24 full region) for the spherical capacitor. 
Note: All circularly-curved edges and surfaces will be modeled exactly [10].) 

z

0

Fig. 2.  Initial mesh for analysis model domain (eight conforming curvilinear 
tetrahedra): the annular prism region represents seven tetrahedra, as indicated 
by the bounding faces.  The inner tetrahedron (connected to the origin) is the 
“strong” h-p type element in this study; it is defined to provide the equivalent 
discretization of eight mixed-order tetrahedra, which are situated interior to 
the h-p element, according to the same distribution given for the initial mesh.  

Table I.   h-p Element Modeling Performance for Spherical Capacitor

Error in Electrostatic Capacitance 1Initial Mesh 
Element  

Order Initial Mesh 2 h-Refined 3 h-p Refined 4

2 500% 220% 6%
4 200% 62% N/A 
8 28% 5.7% N/A 

1 Error measured relative to analytical value of dc capacitance for the device.
2 Mesh of 8 scalar tetrahedra for the analysis domain, as described by Fig. 2. 
3 Mesh of 7 initial mesh elements plus uniform-order version of h-p element. 
4 Mesh of 7 initial mesh elements plus mixed-order (i.e. 2, 4, 8) h-p element.
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Abstract – The irregular finite element formulations, in combination 
with the concept of irregular-cut continuity constraints, are extended to 
develop structurally overlapping finite elements, which may be used to 
construct quilted and layered mesh geometries. These constructs reveal 
a revised interpretation of generalized h-p refinements, and new insight 
on adaptive meshing.  The extended formulations, with implementation 
practicalities and test results, are reported for triangles and tetrahedra.

INTRODUCTION 

The formulation and practical techniques of C0 conforming 
irregular finite elements for continuum analysis, together with 
the concept of irregular-cut continuity constraints, is extended 
to develop a basis for the introduction and use of overlapping 
elements and layered meshes in h-, p- and h-p adaptive finite 
element analysis (AFEA) scenarios [1,2,3].  The generality of 
the overlapping element technique should not be equated with 
the method of “nested tetrahedra”, which only incorporates a 
specialized and restricted partition of the overlapping element 
formulation and its inherent attributes [4]. The basic concepts 
and potential significance of overlapping finite elements were 
recently envisioned on a theoretical level, without connection 
to the feasibility of irregular-cut method implementations [5].   
The primary objective of this contribution is to formulate and 
introduce the use of overlapping elements and layered meshes 
for practical AFEA; then investigate the implications of these 
constructs.  It should be noted that overlapping elements offer 
the potential for a far broader range of h-, p- and h-p adaptive 
refinement trajectories, compared to that given by “standard” 
(non-overlapping) irregular elements – however – this added 
range comes at the cost of added computational complexity. 

The underlying concept of overlapping finite elements, and 
their basic application in AFEA, are illustrated in two stages, 
using triangles for clarity.  First, the two simplest refinement 
constructs are defined to be purely local to a single element; 
they are described in Fig. 1.  Under these two interpretations, 
overlapping element methods offer an operational framework 
within which to model and explore the potential implications 
of generalized h-p finite elements.  Second, and perhaps more 
interesting, the refinement constructs involving multi-element 
spanning overlaps, and the associated layering of sub-meshes, 
are illustrated in Fig. 2.  Under this generalized construction, 
a range of significant and potentially powerful interpretations 
are available, depending on how the overlapping elements, or 
sub-meshes, and their associated degrees of freedom (DOF), 
are incorporated into the refined discretization.  For example,  

Fig. 1.  Key implications of overlapping element construct:  (a) two identical 
triangles with different orders; (b) two different triangles of the same order.  
For triangle 2 of higher (hierarchal) order than 1 in (a), the addition of 2 to 1 
results in a standard p-refinement of 1.  For (b), the addition of triangle 2 to 1 
yields a basic h-refinement of 1, i.e. introduces a C0 edge (xy) into triangle 1.  

two immediate possibilities are apparent:  the DOF associated 
with the overlapping element(s) can be added to those of the 
underlying mesh, to enrich the discretization on the overlap 
region; alternatively, the DOF of the overlapping element(s) 
can be substituted for those of the underlying mesh, in order 
to replace the preexisting discretization on the overlap region. 
These two approaches yield quite different AFEA refinement 
implications.  The first permits the direct augmentation of the

Fig. 2.  General, multi-element spanning, overlap example:  a single-element 
sub-mesh patch (labeled P) is applied to update and refine a preexisting mesh 
discretization, defined locally by the union of triangles A, B, C, D, E and F.

(a) (b)

2 2

11
x

y
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preexisting discretization, through the introduction of added
C
�

(interior) DOF and C0 (edge) DOF, without removing or 
compromising any preexisting DOF.  The second refinement 
approach facilitates the localized removal and replacement of 
unnecessary or inefficient preexisting DOF (both C

�
interior, 

and C0 edge, types).  Further, it should be noted that a variety 
of intermediate refinement scenarios are also available, based 
on combinations of these two limit approaches.  In addition, it 
is also important to note that combined simultaneous h- and 
p-refinements are supported by the generalized formulations, 
for both 2-D and 3-D applications.  Finally, repeated, multi-
layered and recursive overlap refinements are facilitated; and 
mesh layer superposition models, and discretization pruning 
procedures for redundant (e.g. fully overlapped) elements, are 
available for managing AFEA discretization evolution. 

MATHEMATICAL FORMULATION 

The mathematical development, derivation and formulation 
of overlapping elements for FEA depends on a generalization 
and reinterpretation of the irregular-cut continuity constraints 
([1], [2] and [3]), to realize the concept of “irregular overlap” 
connectivity relations.  For the general case, the mathematics 
behind the derivation and definition of the constraint relations 
which connect two adjoining elements, that share an arbitrary 
face-on-face overlap (2-D case), or a common sub-volume of 
intersection overlap (3-D case), is both rather subtly detailed, 
and somewhat heavily involved.  In particular, certain aspects 
of the primary development, efficiency reformulation, and the 
implementation of the DOF connectivity equations, including 
the computational algorithms that are needed to impose them, 
are intrinsically abstract and quite challenging in a condensed 
presentation.  In the following, only a simplified introductory 
overview of the salient points is presented; an expanded and 
complete description of the formulation will be developed in 
the long version of the paper, and reported at the conference. 

Presented in its conceptually simplest form, the derivation 
of the method of overlapping elements may be developed as 
the conjunction of two sequential phases:  the assembly of the 
unconstrained and disconnected global matrices; followed by 
the assembly and application of the “connectivity” constraints 
which are responsible for both specifying the connected DOF 
for the non-overlapping elements, as well as (most important) 
for prescribing the intended interpretation of the DOF related 
to the overlapping and layered elements.  Only the first phase 
is addressed in this abridged presentation; the second is subtle 
and rather detailed – it will only be covered in the long paper. 

The assembly of the unconstrained and disconnected forms 
of the global matrices is straightforward, and highly similar to 
that of non-overlapping FEA formulations [8]. The important  
difference is that while non-overlapping elements yield block 
diagonal “K” matrices (one block per element), overlapping 
elements introduce off-diagonal blocks into K, corresponding 
to each pair of overlapping elements.  While the supplemental 
entries add to the complexity of matrix assembly, it is key to 

note they are easy to define and cheap to compute, based on 
irregular-cut element-to-element transformations [1,2].  For 
example, for the overlap parts of triangles P and A in Fig. 2, 
the off-diagonal local matrices are:  KPA  =  TPA KA  =  (KAP)T.

ILLUSTRATIVE RESULTS

The validity and effectiveness of overlapping refinements 
have been tested and investigated over a wide range of AFEA 
applications.  One simple yet instructive example is described 
by Fig. 3, which details some initial h-adaptive analyses of an 
ideal coaxial line.  The system consists of two long, straight, 
loss-less conductors, separated in air.  The inner conductor is 
a rod of radius r

�

; the outer is a hollow cylinder with an inner 
radius r

�

= 100 r
�

.  Fig. 3 defines the initial and once-refined 
meshes for 1/12 of the sectional geometry.  The objective of 
this study was to resolve the inductance (per unit length) for 
the structure.  The results are provided in Table I.  A range of 
converged h-, p-, and h-p results, for triangles and tetrahedra, 
will be reported at the conference and in the long paper. 

Fig. 3.  Initial and overlap refined meshes for circular coaxial line inductance 
analyses:  (a) single full-domain curvilinear triangle; (b) full-domain triangle 
with one overlapping sub-domain triangle (“1” shows position of curved base 
of optimal overlap triangle; “2” locates base of half-radius overlap triangle).  
(Curved edges modeled exactly [6]; optimal overlap located analytically [7].) 

Table I.   Overlapping Element Modeling Performance for Coaxial Line

Error in Direct Current Inductance per Unit Length 1Uniform 
Element  
Order Single Element Half Overlap 2 Optimal Overlap 2

1 150% 76% 39%
2 60% 32% 9%

1 Error measured relative to analytical value of dc inductance per unit length.
2 Mesh of 2 elements: original full-domain �; plus 1 sub-domain overlap �.
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Abstract Practical h-p adaptive finite element methods and strategies 
designed to exploit the h-refinement modeling attributes and efficiencies of 
irregular triangles and tetrahedra are developed and investigated.  A range 
of  fundamental  h- and h-p adaptive approaches for both scalar and vector 
elements are proposed and explored.  The main advantages and drawbacks 
of these techniques are illustrated, and evaluated in terms of the traditional 
h- and h-p adaption models.

INTRODUCTION

Adaptive finite element analysis (FEA) for electromagnetic 
systems has become increasingly important over the years, and 
is now a mature and well-established research area.  Irregular 
triangles and tetrahedra, for scalar- and vector-element-based 
electromagnetics, were first introduced in 1999-2002 [1],[2],[3]. 
This work concluded that these elements should be well-suited 
for adaption. The purpose of this contribution is to investigate 
the efficient and effective application of irregular triangles and 
tetrahedra in a practical, very-high-order, h-p adaptive setting. 

The main advantage of irregular finite elements for adaption 
is that they facilitate the unrestricted insertion and refinement of 
h-type degrees of freedom (DOF) � via purely localized element 
subdivisions � without compromising the geometric quality of 
the mesh or the continuity of the model [1].  In effect, irregular 
triangles and tetrahedra support a genuine h-refinement analog 
to mixed-order p-adaption, by allowing for the truly unrestricted 
subdivision of individual elements within a mesh. 

The potential value of new and improved adaption strategies 
specialized for irregular elements is directly connected with the 
vastly increased range of h- and h-p trajectories available with 
the Airregular cut@ refinement model [1].  Standard approaches 
were never intended to exploit this expanded space effectively, 
and revised schemes designed to capitalize on the flexibility of 
the model are strongly indicated. 

ADAPTIVE STRATEGIES FOR IRREGULAR ELEMENTS

Practical adaptive FEA system implementations are based on 
four primary modules, which interact according to the classical 
FEA adaptive feedback model, described below [4].  They are: 
initial mesh generation (A); matrix assembly and solution (B); 
error estimation (C, D, E); and discretization refinement (E, F).  
In most adaptive FEA systems, these modules are designed, and 
often tuned or optimized, to exploit the specific advantages and 
avoid the inherent limitations of the refinement models and type 

A.  Generate initial finite element discretization. 
Repeat: 

B.  Assemble and solve finite element problem. 
C.  Evaluate solution accuracy;  if adequate then STOP.
D.  Identify regions of inadequate discretization. 
E.  Determine required discretization refinements. 
F.  Update finite element discretization. 

of finite element used.  Therefore, it is important to consider all 
components of the integrated adaptive process when developing 
new strategies for irregular elements � not only the implications 
for the refinement model.  In the end, these parts will be closely 
interrelated, and must function effectively as a whole to achieve 
efficient and reliable adaption performance.  Taking this view, 
this investigation will focus on the four primary components of 
the adaptive process, both individually, and finally in synergistic 
combination.  First, the primary implications and corresponding 
strategies associated with the three primary refinement models 
will be studied.  (The r-refinement model will not be evaluated.) 
Second, the potential advantages of using irregular cut elements 
for initial mesh generation, together with some straightforward 
irregular element meshing approaches, will be explored.  It may 
be noted that this component study is equally relevant to purely 
p-adaptive FEA, in addition to general h- and h-p formulations. 
Third, the key benefits and related strategies associated with the 
adaptive refinement and maintenance of evolving irregular cut 
discretizations will be investigated.  Finally, the implications of 
irregular triangles and tetrahedra on error estimation, and simple 
strategies to reinterpret the significance of the error indicators, 
and then successfully exploit them, will be reported. 

One fairly simple, and immediate improvement facilitated by 
irregular elements, over traditional (geometrically conforming) 
h-adaptive practices is to consider the expected modeling value 
and efficiency of the secondary DOF normally associated with 
subdividing a triangle or tetrahedron.  These DOF occur when 
adjacent triangles or tetrahedra are bisected to maintain solution 
continuity in traditional FEA formulations, but they are optional 
when irregular elements are used.  Such bisection DOF tend to 
have strong orientation bias, with high symmetry dependence.  
Therefore, it is straightforward and inexpensive to assess their 
potential modeling value, based on approximate field solutions. 
Then, for irregular element FEA formulations, such secondary 
DOF can be added into the discretization when they are useful, 
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and excluded when they are superfluous or even detrimental to 
the future refinement of the mesh. This simple strategy, together 
with a range of other, less obvious, and more in-depth strategies 
and techniques, will be presented at the conference, and in the 
long version of the paper.  In each case, supporting illustrative 
results, which demonstrate the potential impact and efficacy of 
these methods, will also be provided.  One example numerical 
investigation, which explores the potential benefits and related 
costs of employing an irregular triangle FEA formulation to aid 
in the generation of more efficient and productive initial meshes 
for p-adaptive analyses of high-frequency Helmholtz systems is 
presented (in summary form) in the following section.  

ILLUSTRATIVE RESULTS

A variety of practical 2-D and 3-D electromagnetic systems 
have been analyzed. Both regular and irregular cut triangle and 
tetrahedra formulations were applied to compute h-, p- and hp-
adaptive FEA solutions, to illustrate and comparatively evaluate 
the potential implications, benefits and strategies associated with 
irregular element methods.  One test system is a dielectric slab 
waveguide which terminates in free space.  The geometry, open-
boundary model [5], and comparable initial p-meshes (regular 
and irregular) are described in Figs. 1 and 2.  The slab dielectric 
constant is 5 and the waveguide is driven in its dominant mode, 
at a frequency of k0d = 0.15 (d is the thickness of the slab).  The 
analysis goal was to compute the phase angle of the reflection 
coefficient (S11) at the input port of the device.  Four p-adaptive 
analyses, based on both regular and irregular initial p-meshes, 
were computed; the comparative performance results are plotted 
in Fig. 3.  In addition, two examples of the adaptively converged 
p-refinements are provided in Figs. 1 and 2.  These results show 
that irregular elements can facilitate significant performance 
gains in mixed-order p-adaptive applications when they are used 
to define and construct irregular p-meshes.  The p-adaption cost 
comparison is striking � exceeding 10:1 for errors below 0.25o.
Similar gains are evident for the uniform p-refinement model.  A 
selection of additional examples, based on tetrahedral analyses,  
and vector (edge) element formulations, will be presented at the 
conference and in the long version of the paper.    
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Fig. 1.  System geometry, initial irregular p-mesh (69 2nd-order triangles), and  
p-adaptively converged discretization for dielectric waveguide analysis.  Thick 
line denotes input port excitation plane; circular arcs mark absorbing boundary 
condition.  Orders:  white = 2; light grey = 4; medium grey = 6; dark grey = 8.

Fig. 2.  Initial regular p-mesh (134 2nd-order triangles) and p-adaptively con-
verged discretization for dielectric waveguide analysis.  Orders as per Fig. 1.

Fig. 3. Cumulative cost of p-adaptive solution versus phase error in reflection 
coefficient (S11 measured at input port) for dielectric slab waveguide analyses.
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Abstract �Two 2D Finite Element techniques for the analysis of the 
transient evolution of electromechanical devices are proposed and 
compared. The two techniques are based on a FEM/BEM formulation 
and on a FEM approach based on overlapping meshes. The merits and 
drawbacks of the two approaches are discussed when applied to the 
analysis of actual devices. 

INTRODUCTION

The Finite Element Method (FEM) is well known as a 
very efficient tool for the analysis of electromagnetic devices. 
However, difficulties arise in the application of this technique 
to electromechanical actuators, mainly if the motion of 
components is not limited to a relative rotation, as in rotating 
machines. The approaches usually proposed in literature can 
be classified in two categories depending on the use of: 
�� a unique mesh on the whole domain which is 

regenerated or modified at each instant; 
�� separate FEM meshes for each component which are 

coupled by analytical relations or by mesh-less 
techniques. 

This paper proposes and discusses two 2D FEM 
techniques for the electromechanical transient analysis of 
voltage driven devices. Both the methods use fist order shape 
functions and employ the Fixed Point (FP) scheme for the 
handling of magnetic non-linearity. For the time evolution of 
electromagnetic and mechanic quantities, a step-by-step 
procedure is developed, approximating the time derivative in 
the interval (t÷t+h ) by the derivative at t+kh, with 0 < k < 1. 

2D FEM TECHIQUES 

The first approach makes use of overlapping finite 
elements. Two meshes are independently developed. The first 
one (moving mesh) involves only the armature with a narrow 
air border; the second one (stationary mesh) include winding, 
fixed core and the whole region surrounding the actuator. The 
moving mesh can slide on the domain covering totally or 
partially some elements of the stationary mesh. A suitable 
algorithm at each instant updates the stationary mesh near the 
armature, eliminating the covered triangles and creating new 

elements around the border. An example of remeshing is 
presented in Fig. 1. Non-conforming stationary nodes are 
allowed on the moving boundary; in order to guarantee 
continuity, their potentials are interpolated in term of those of 
the moving nodes on the same interface. At the end of this 
operation a standard FEM problem is to be solved. 

Fig. 1 Overlapping of the moving mesh on the fixed grid and remeshing 

In the second approach, the moving core (with a narrow air 
border) and the fixed components (including the core, the 
windings and a portion of air around it) are discretised using 
two separate FEM grids, which are never modified during the 
time evolution. The coupling between the two regions is 
obtained by the Boundary Element Method (BEM), 
formulated in terms of the magnetic vector potential. 

Both the numerical techniques lead to the following 
differential system, which describes the electromagnetic 
behavior: 

�

�

�
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In this equation, the problem unknowns (nodal values of 
magnetic vector potential and their normal derivatives, circuit 
currents) are divided into N state variables x and M algebraic 
variables y. Matrix B, which takes into account the 
phenomena of electromagnetic induction, is defined only for 
conductive parts of the device and it is invariable in time. 
Matrix A, divided into four sub-matrices, is modified during 
the motion and, in the overlapping method, also its dimension 
M can change at each instant. Finally, vector c includes all the 
external sources and the contribution of FP residuals. 

By applying the step-by-step procedure, at the instant i the 
system becomes 
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where h is the time interval, k is the coefficient of the time 
stepping scheme and vector pi-1, involving the behaviour at 
the previous instant, can be computed by the recursive form: 

21 11
��

�

��
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NN

i
N p

k
kxB

k
p          (3)

After the solution of the electromagnetic problem, the force 
(torque) acting on the moving core can be computed by the 
Maxwell Stress method. It can be noted that the Maxwell 
tensor is integrated on closed paths laying on the moving 
border, which is never modified during the time evolution, 
ensuring a satisfactory accuracy in the calculation. 

The computed electromagnetic force (torque) Fem is
inserted into the mechanic equation: 

emF
dt
dskskk

dt
sdm ���� 2102

2
       (4)

where m is the mass (inertial moment) of the core, k0 is a 
constant opposing force (torque), k1 is the constant of possible 
spring elements, and k2 is the constant of possible viscosity 
effects. This equation is integrated by the step-by-step 
procedure taking into account the geometrical constraints, in 
order to compute the displacement of the core during the 
considered time interval h. The motion is finally applied to 
the armature, in order to update system (2) for the next 
instant. 

APPLICATION

The models are applied to the analysis of a C-shape 
electromagnet. A step voltage is imposed to the exciting coil 
through a resistance, in order to analyze the closing action of 
the device, including the presence of spring element and a 
threshold initial force. The simulation results are compared in 
the following figures, that present the waveforms of the 
supply current (Fig. 2a), the attractive magnetic force (Fig. 
2b) and the core stroke (Fig. 2c). In each figure, one curve is 
obtained with the FEM/BEM technique and the other two 
refer to overlapping method considering two different domain 
size. In fact, while the hybrid FEM/BEM approach is 
developed in an open boundary space, the other technique 
requires the preliminary definition of a finite domain, within 
the electromagnetic phenomena are enclosed. The 
computations have shown that the results are sensibly 
influenced by the FE domain choice: greater dimensions 
produce results closer to the ones provided by the FEM/BEM 
approach. 

The results, obtained by the application of the two 
methods, are found to be in a very good agreement. From the 
computational point of view, the FEM/BEM approach, giving 
rise to a densely populated system matrix, increases the 
processing burden. 

A more detailed comparison between the two techniques 
will be developed in the full paper considering different kinds 
of electromagnetic actuators. 
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Fig. 2 Time evolution of the exciting winding current (a), electromagnetic 

force acting on the armature (b) and core stroke (c). 
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Abstract—Finite elements are used to compute eddy currents and 
magnetic diffusion time constants in steel cylinders with nonlinear 
B-H curves.  Computations are made of diffusion times versus 
current in a typical axisymmetric magnetic actuator, showing 
good agreement with recently published approximate analytical 
formulas.  The computed nonlinear diffusion time constants are 
then used to compute an equivalent resistor that is used in a 
systems model coupling the magnetic actuator in a coupled 
electrical, mechanical, and hydraulic system. 

I. INTRODUCTION 
Magnetic diffusion time [1] is the time required for B in 

the center of a material to rise from 0 to approximately 63% of 
its final value after a step current excitation.  A useful concept 
in predicting eddy current effects on transient magnetic fields, 
the magnetic diffusion time constant m has been derived 
analytically for several simple geometries of linear steel [1].  
Magnetic diffusion time has been used recently to help predict 
transient force and motion of magnetic actuators [2].  

Saturation is common in magnetic actuators and other 
magnetic apparatus, but no derivations and computations have 
been found for nonlinear diffusion time.  This paper examines 
the effects of nonlinear steel B-H curves on magnetic diffusion 
time. It begins by deriving a new formula for diffusion time in 
cylinders made of steel with a simple “step” B-H curve.  It 
then uses nonlinear transient finite element analysis to compute 
nonlinear diffusion times for comparison with the analytic 
formula and for typical actual steel B-H curves.  Finally, the 
finite element computations of nonlinear diffusion time are 
used in a systems model of a typical magnetic actuator in a 
coupled electrical, mechanical, and hydraulic system. 

II. NONLINEAR DIFFUSION TIME FOR “STEP” B-H CURVE

A recent book [3] derives formulas for transient eddy 
currents and magnetic fields in steel cylinders with a very 
simple B-H curve.  The curve is assumed to be a step with 
infinite permeability (slope) from B=0 to B=±Bm, where Bm is
the saturation flux density.  The magnitude of B cannot exceed 
Bm, because the permeability (slope) is assumed zero for 
nonzero H. 

Assuming the above step B-H curve for a steel cylinder of 
radius R and conductivity , [3] found that the magnetic field 
diffuses into the cylinder following a step wavefront at moving 
position r0(t).  A formula [3] for the wavefront r0(t) derived for 
a field switched between –Bm and +Bm is here altered to 
account for a field switched from 0 to +Bm by an applied Ho(t)
:

  2 Hodt / [½ R2 Bm] =  (ln  –1) + 1               (1) 

where     = r0
2(t) /R2            (2) 

The above two formulas are here applied to determine 
magnetic diffusion time.  Because the current is a step applied 
at time zero, Ho is also a step, and thus the left hand side of (1) 
has its integral over time replaced by Ho m.  The value of  is
zero, since r0(t) = 0 when t = m.  Thus (1) becomes 

4Ho m  / [ R2 Bm] =  1             (3) 

giving  m  = [ R2 Bm] / [4Ho]           (4) 

III. NONLINEAR DIFFUSION TIME IN BESSHO MAGNETIC 
ACTUATOR

The magnetic actuator analyzed here was originally 
analyzed by Bessho et al [4].  It is pictured elsewhere [2],[4] 
and is axisymmetric of axial length 270 mm.  The radius of its 
cylindrical plunger and of its cylindrical stopper is 20 mm. 

The diffusion time of (4) can be evaluated for the nominal 
applied current I = 0.5 amp in the 3300 turn coil [2] as 
follows.  The applied  Ho needed in (4) is found from 

Ho = NI/ l   
(5)

where N = 3300.  The path length l is assumed to be the 250 
mm axial length of the coil window, meaning that the 
cylindrical core of radius 20 mm drops all amp-turns (the outer 
yoke has negligible mmf drop).  The assumed Bm in steel is 2 
teslas.  Thus I=0.5 amp gives Ho=6600 amp/m.  Substituting in 
(4) with the steel = 1.7E6 S/m [2],[4] gives m = 51.5 ms, 
which is listed in Table 1.  The other analytical value listed in 
Table 1 is for the current quadrupled to 2 amps, for which (5) 
and (4) obtain one fourth the diffusion time, m = 12.9 ms.  
Both of these nonlinear diffusion times are much less than the 
93 ms diffusion time obtained using an existing linear formula 
[1],[2].

Nonlinear transient finite element analysis is next used to 
verify (4) and to allow computation of nonlinear diffusion time 
with a variety of B-H curves.  Rather than model the entire 
Bessho actuator, the 10 mm slice shown in Fig. 1 is modeled. 

|-- 20 mm core ---|          w i n d i n g                               yoke       
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Fig. 1. Slice (height 10 mm) of Bessho magnetic actuator, showing computed 
magnetic flux lines at t= 20 ms with actual B-H and I = 0.5 amp. 

The finite element model of Fig. 1 is first used to verify (4) 
for a step B-H curve.  Because a piecewise linear B-H curve 
must be entered that has finite slopes suitable for Newton’s 
iterative method, the numerical B-H curve cannot have either 
infinite nor zero permeability.  Instead, the step B-H was 
approximated with a constant relative permeability of 10,000 
for B below 1.93 T.  Above 1.93 T the slope was gradually 
reduced to the permeability of free space above 2.07 T. 

For the step B-H curve, finite element analyses of Fig. 1 
were made with input currents of 0.5 and 2 amps.  Fig. 2a 
shows the FEA computed magnetic flux density waveshape in 
the core at a typical instant; note that it is a steep step to 2 T as 
expected.  The time when the wavefront reaches zero radius is 
the magnetic diffusion time entered in Table 1.  The computed 
diffusion times agree well with the times predicted using (4). 

Other transient finite element computations were then 
made using the actual Bessho core and yoke B-H curves 
[2],[4].  Fig. 2b shows the computed flux density waveshape at 
a typical instant; note that it now has a more gradual rise.  The 
computed diffusion time constants with the actual B-H curves 
are also listed in Table 1.  Note that B-H curve shape has a 
significant effect on the computed nonlinear diffusion time. 

TABLE 1. 
BESSHO ACTUATOR NONLINEAR MAGNETIC DIFFUSION TIME 

CONSTANTS (ms) 

Current (amps)  Analytical (4)        FEA (step B-H)                FEA (real B-H) 
0.5     51.5     53.0       42.0 
2.0     12.9     13.4       11.5 

a) 

b)

Fig. 2.  B (teslas) versus radius (mm) in core computed by nolinear transient 
FEA; a) with step B-H at t = 51 ms, b) with actual B-H at t = 40 ms. 

IV. DIFFUSION RESISTOR IN COUPLED SYSTEM MODEL

Eddy current diffusion effects can be included in circuit 
models by adding a parallel resistor, which for an 
axisymmetric actuator with linear B-H and height h is given by 
[2]:

REL = 4  (N/½)2 /[2 h]             (6) 

This resistor is in parallel with the magnetizing inductance [2], 
and the resulting L-R circuit simulates the linear diffusion 
time. 

To include nonlinear B-H effects, the L/R time constant 
must be adjusted by the ratio of linear to nonlinear diffusion 
times, giving a nonlinear eddy resistor: 

REN =  ( ml / mn ) 16  N2 /[2 h]          (7) 

From above computations at 0.5 amps, ( ml/ mn )=(93/42).
Also N=3300 and h=0.27 m.  Thus REN = 1320 , which the 
full paper will show is a reasonable value. 

The above resistor can now be added to circuit models of a 
wide variety of coupled systems, including electrical, 
mechanical, and hydraulic systems.  Adding the resistor to a 
recent model of the Bessho actuator controlling a hydraulic 
cylinder and load mass [5], the resulting armature position 
versus time without and with REN are plotted in Fig. 3.  The 
nonlinear diffusion causes a noticeable delay in the response of 
this coupled system.  The system model will be shown in the 
full paper, along with various electrohydraulic results. 

Fig. 3.  Computed armature position x (in meters) versus time (in seconds) for 
step input of 0.5 amps to Bessho actuator in electrohydraulic system [5] with 
load mass = 1000 kg.  The left curve is without a nonlinear diffusion resistor, 
while the right curve is with REN = 1320 ohms included. 
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Abstract--In this paper, numerical techniques to solve moving 
problems are presented.  The induced eddy current and its coupled 
field in moving media are computed with 3D FEM. A proper gauge 
condition for this problem is also indicated. Upwinding adaptive 
iteration scheme is used to suppress the oscillation and accelerate the 
convergence. The calculated results are compared with the 
measurements.  

Index Terms-- numerical technique, moving problems, eddy current, 
upwind method.  

I. INTRODUCTION 

It is imperative to analyze the coupled field between 
electromagnetic field and force field in studying of the 3D 
non-linear eddy current field of moving electromagnetic 
medium.  Eddy current may be generated by motion of the 
conductor in the electromagnetic system. We encounter the 
problems of moving conductors at calculations of eddy 
currents and forces in magnetic levitation devices. The 
difficulty in this problem lies in the treatment of the velocity 
terms in the governing equations. To solve the problem, 3D 
finite element method is used for achieving a set of 
simultaneous partial differentiation equations, which contain 
a first derivative term. The numerical oscillation will be 
encountered in the Galerkin finite element solution because 
of the influence of the mesh’s size, the material properties of 
the conductor and the boundary conditions imposed [1].  

The existence of moving term causes the lack of diagonal 
dominance in the coefficient matrix of finite elements 
equation while destroying its symmetry. That leads to 
coefficient matrix of finite element equation become worse 
to solve, sets off that the numerical solution oscillates 
distortedly. To solve the issue, upwinding adaptive iteration 
scheme is used in the solution of coefficient matrix to 
remedy the weakening from the moving term, improve the 
efficiency and accelerate the convergence of the 
Bi-conjugate Gradient (BICG) method, drop down the 
equivalent Peclet number and clear up the distortion 
oscillation efficiently.  

In region of high permeability, which moves, enforcing 
the Coulomb gauge[2] can additionally optimize the stability 
of the solution. The calculation of the force taken into 
account of the eddy current in the conductor  is  presented. 

II. MATHEMATICAL MODEL  

The problem volume is partitioned into conducting and 
non-conducting regions when the A

� ,� - A
� method is used  

for solving 3D eddy current problems. So the fundamental 
equation of the magnetic field can be written as follows 

sJA
t
AA

��

�

�

�

�
�
�

�

�

�
�

�

�

�	�


�

�

�	��	�	 ����        (1) 

0�
�
�

�

�

�
�

�

�

�	�


�

�

�	
	 A
t
A �

�

�

���                 (2) 

In order to impose Coulomb gauge 0��� A
�

, we 
provide the term  

� ����� dAN
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in (1) and (2). Using the Galerkin weighted residual 
technique, we have 
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Where N is the shape function, 0� is the reluctivity of the 
vacuum. The matrix equation can be shown as 

� �� � � �FU �S                        (5) 

A. Modeling of the velocity terms  
Numerical oscillation will occur when the Peclet number, 

��� /hP � /2 , is greater than 1 ( h is the average element 
length in the direction of the velocity). An Adaptive-Upwind 
FEM is used in this method.  

B. Modification of the artificial diffusion terms  
As it was mentioned above, the velocity term drops the 

diagonal elements of the stiffness matrix down resulted from 
the standard Galerkin method. That leads to the numerical 
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oscillations. In order to guarantee BICG’s convergence, the 
artificial diffusion elements are modified . 

C.  Solution of the unsymmetrical equation  
The coefficient matrix S in (5) is unsymmetrical because 

of the velocity  terms modeled.  Three  components  of 
magnetic potential and one electric scalar potential are 
required inside the eddy current region, only three 
components of magnetic potential are required inside the 
non-eddy current region. Two 1D variables are used to store 
the coefficient matrix S, one is for the non-zero entries of the 
upper triangular, the other is for the non-zero entries of the 
lower triangular. The finite element equations are solved by 
BI-CGSTAB method[3].  

III. RESULTS 

The method has been tested through analyzing the 
TEAM Problem 9-1[4]. Fig.1 shows the calculated data of 
the flux for several coil velocities. 

In the operating magnet of an AC electromagnetic 
contactor, the displacement, z, the velocity, �, of the 
armature are obtained by solving the following motion 
equations

asg FFF
dt
dm ���

�                      (6) 

��

dt
dz                                  (7) 

where m is the mess of the moving conductor (armature), Fg
is the force of the gravity, Fs is the spring force and Fa is the 
attractive force to be calculated. 
The electric circuit equation is given as 

dt
dLi

dt
diLiru ���                         (8) 

dt
dL
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L
iru
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di

�

�

�                         (9) 

�
�
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i

L
2
12

2
                        (10) 

In (9), u is the source voltage, r is the resistance of the 
exciting coil and L is the inductance. 

Since the applied voltage changes over time, the 
electrical and mechanical equations are solved step by step 
using the Runge-Kuta method coupled with the field 
equation (5).

The comparison of the exciting current of an AC ontactor 
is shown in Fig.2. 

IV. CONCLUSIONS

In solving the motional induction problems, the 
existence of moving term causes the lack of diagonal 
dominance in the coefficient matrix of finite element 

equation while destroying its symmetry. That leads to 
coefficient matrix of finite element equation become worse to 
solve, and sets off that the numerical solution oscillates 
distortedly.  Adaptive  upwinding  scheme is  used in the 
solution of coefficient matrix to remedy the weakening from 
the moving term, improve the efficiency and accelerate the 
convergence of BI-CGSTAB, drop down the equivalent 
Peclet number and clear up the distortion oscillation 
efficiently.  

-5. 00E-05
0. 00E+00
5. 00E-05
1. 00E-04
1. 50E-04
2. 00E-04
2. 50E-04
3. 00E-04
3. 50E-04
4. 00E-04
4. 50E-04
5. 00E-04
5. 50E-04
6. 00E-04
6. 50E-04
7. 00E-04
7. 50E-04

1 2 3 4 5 6 7 8 9 10 11 12
Distance from the coil  (ID)

Br
(T

)

v=0. 0m/s Anal yt i cal  
v=0. 0m/s Cal cul ated
v=1. 0m/s Anal yt i cal
v=1. 0m/s Cal cul ated
v=10. 0m/s Anal yt i cal
v=10. 0m/s Cal cul ated
v=100. m/s Anal yt i cal
v=100. m/s Cal cul ated

   Fig.1. Comparison between different results: the analytical 
results and the calculated results by presented method 

0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9

0 1 2 3 4 5 6 7 8 9 1011121314151617
Time £ m̈sec)

Ex
ci

tin
g 

cu
rr

en
t (

A
)

Standard FEM
Adaptive Upwind
Measured

Fig.2.  Comparison of the exciting current of an AC contactor. 

REFERENCES

[1] E. K. C Chan and S. Willimson, “ Factors Influencing the Need for 
Upwinding in Two-dimensional Field Calculation,” IEEE Trans. on 
Magn., vol. 28, pp1161-1614, March 1992. 

[2] A. Kameari, K. Koganezawa, “Convergence of ICCG method in FEM 
using edgy elements without gauge condition,” IEEE Trans. on Magn.
vol. 33, pp1223-1226, March, 1997. 

[3] H. A. van der Vorst, “BI-CGSTAB: A fast and smoothly converging 
variant of BI-CG for the solution of nonsymmetric linear systems”, 
SIAM J. SCI. STAT. COMPUT. Vol.13, No.2, pp631-644, March 
1992.

[4] “Problem 9: Velocity effects and low level fields in axisymmetric 
geometries”, Proceedings of the European TEAM workshop and 
International Seminar on Electromagnetic field analysis. Oxford, 
England, 23-25 April 1990. 

51Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



�

�� �������� 	
���
��� �������
 	��
����� �
��� 	
���
�
��
��� ���
���
 	��
���� 	
������ �
�������
��

���� �� ����	 ���
 ���
�
� ������
�
 �	
�����	� ����
���
 ���
��� ������
 �����
 �
��������

��������� ���� ����� �����	
� 
����� �	
 ����
�
��	 ��
	�� ��	�
� �����	
 �������
��	� 
� ������� 
�� ������	� ���


���	 ����
��� ������
� �	
 ���
���� ��		��
�
 ���	�
�� ����
���
� ������	
�
 �� �
��	
�
 ����� �� �� ���
���� ��		��
�

����
 ��	
��
���� ���	� � ���	�
�� ������ ��
�	
��� �	
 �	

����
��� ���
�� ��
�	
��� �� �
�
� ��������� ��� 
��� ��������
�� ���
 �������
��	� �	 ��
���
 ���	�
�� ������ ��
�	
���
������ �� 
���	� �	
� �����	
 ����
��� ������
� �	
 � 
�
��

���	�
�� ������ ��
�	
��� 
���	� �	
� �����	
 ��
��

�� ���������	���

����������	
 �	 ���	���
 

���� ����	���� ��� ������	�
�� ����� ��������	���
 ����
�
 
������ ���� ���
���
 
���

���
 ���� ������� ���	 ��������� �� ����

�� ��� �	� ���
������
 ���� �� ���� ��
� ��������� �	� �������	��� �	
��� !" 
������� � ����������	 �� ��#� �	�� �

��	� ����
����� 
�		�
��� ���	���
 
��
���
 
�����	��� �� 
���	���

���
 
������ �� �$���	�� 
��
��� �!�� %�����	� 
���� 
�	�
��
���
 ���� 	 �����	��
 
������� �� �	 ���
���
 
��
��� �

��
� ��

���� ���� � ���� ����������	 �&�� '�� ��� �

�� ����� ���� 
�������	
 �� ��� 
��� ����� (	 ���
 �����)
�� ���� 
������ �	 �$����� *�����+) ���� � �������� 
�	�
	�
��� ���	���
 
��
��� 
�����	��� �� 
���	��� 
��� �	� ��
� �������� 
�		�
��� 
���� 
�	��
��� 
������� �� �	 ���
�
���
 
��
���� %��
 ����� ���
�	�
 ��� ����������	
 �	� 
���
��
���
 �	 ���
 �$������

��������
����	
���

����	
��� ���

�����

���
	�� ���

�������


��� ���

���
���
 
��
	��

����� 
���	
���

�������� 
���

� � �����

� � �����������

��	
 �
 ��
���� �������


��� 
�����
�	��� 
�� ������������
�� ���
�	��

��� ���
���� ��	��

���	 � ��� ����������	 �	 ��� ��� *,�+ �	� ����� ����
	���
 

���� ����	���� �	 ��� ���	���
 �������� *,�+ �
 �
��)
�������
 ������ �� ������ ��� -�����.
 ������� �� ,� �

� �������� 
�		�
��� �����	� ��� �$�����) �	 ��� 
��
��
���� �� *�����+)� 
��
������	 �
 	�� /��� �	 ������) ������

�� �
 /��� �	 ���
 �$����� *� 0 �����*�++� %�� 
������	
���
� ��
 ���	� �� 
���� ���
 ������� �
 ��� �	�����
���	

� ������ � �� ������ �
 ���� ������� ����� ��� ! "�#���� ������

� $�%&���&��� �'(�����&������)
� �� *���&%��� (+�,(*� -.  !�
�� �� ����� "����� �'/0���� ������ ������


��

��

��

�	���

��	
 �
 "
�����# �&������� ��	����� ����
�� �
��&
���� 1��� �
�������� �&��


�� � ���	���
 
��
��� 
�� *���� ����	���� 1���+� %�� 1���
����� �� ��� ����� 

���� ����	���� �
 �2��� �� ��� ����� 
���
��	� ���
� 
�����	�
 �� �!�� ��� ���
 �����
�) � *���+
����������	 �
 �
�� ���� �	 �����	�� ��� ��� ��� 
���	���

��� ����

��� 0 ��*��� � ����*Æ��++
����� 3
� ��� �
 ��� 4��� ��� �� � �	�� 
����	� �	 ��� 
���	��� 
���)

��
������ ���� ���� �	� 5�����.
 ��������
� Æ�� �
 ��� ����
�������� �	
����	� �6� �7� 
��
������ ����
� �	�� 
����	� �	 ��� 
���	��� 
��� 
�
� �
3

����*Æ��+� � 0 ��� � � �� 8 0 *,� � ,�+ � ���

-
 ��� ����
�������� �	
����	� �
 
��
������ �	 ��� �	����
��
� 8) �� ���� ��� 
���
� �� �	������� �� �	�� ,� �� �	��
,�� �� 
���
� ��� �	��������	 �	 ,� ��
��
� �� �����
 ���
��������� 
�	
��������	 �� 
��
� ��	���) ��� ����������	

��� 3

� (	 ��� ���	���
 
��
��� *,� +3 � 0 �����*�� ��Æ��+
� (	 ��� ��� *,�+ 3 � 0 ����� � ����*�+

%�� �������	 ������	 ��� 
����	� �	� ������� 
�	 �� �����
��	 �!� 3

�� 0 ���� 9
�

��

��� �
��

��
�, 9

�

��

����*Æ��+ �
��

��
�	

����� � �	� �� ��� 
���� ��������
�

���� 
�����
�	�� 
�� ������������
�� ���
�	��

��� ���	� �����������

'	 �����) �� ����) �	 �������	 �� ��� 
���	��� 
���) �

���� 
�	��
��� ���
� 
�����	�
 ��� ���	���
 
��
��� �	
���
� � 	�		��� 
����	� :��
� %��
 	�		��� 
����	� ��
�

�����
 � 
�		�$��� �������� %�� ��� �� ���
 ���� �
 ��

��� ��� �� ����� ���
 ���� �� �������� %�� �����
��

������	 �� ��#� �	�� �

��	� 	�	 
����� 
�		�
��� 
����

�	��
���
 ���� 	 *	��+ �����	��
 
������ ���� 
��
���
�2�����	
 �
 ��������� �	 �&�� %�� 
������	 �
�� � ����
��
4��� ���
�
 �� �	 ��� ��� �	� �	 ��� 
���� 
�	��
���� (	 ���

�
� �� � 
���� 
�	��
��� ���� ��� �����	��
 *����!+) ��
��4	� � ���� �� 
����	�
 �� ���� 1��	
 ��� ��� �����	��
�
�� 
������� �	 ���
 ���� �	 ���
���#�	���
 
����	� ��	
���

Saratoga Springs, New York USA
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



�

��

��

���������� �������

���� �� ����� 	�
��	��


��� ��������� 	� 
�
�
�
	�� ����
�
 �� �� 	�� 	 ��� ����
	� ��� � ��������� �� 	 ��� ��������� 
�
 ����� ������
��
��
� ��� � � � � �� �
� �����	��� ��
 ����
�
 ���
	�

�
�	
��� �� 
��� �	
� �� �

�� �
�

��

��� � ��� 
�
��

�

�����

��� ����

��
 ��������� �����
� �!��� "� ��
�
�
� 	 ����
��
� ����#
�
� ��
 
� 
�
 ����� ������
��� $� �
 �

� 
� �����

 	
��

�
�	� %��� 
&�	� 
� 
�
 
�
	� ����
�
 ��' �� 
�
 �����
������
���

��

��

	��

��

��

�������� �������

���� �� ����� 	�
��	��


�� �����

 
�
 �	��
 �� 
�
 %���' �
 �����

 
�
 ���
�� 
�
 ����� ������
�� 	� �� �	�
 (( �

��� � ���	�� � 
����Æ����
)�
�
 �
� 	�� �� 
�
 *
�� ��
 
� 	 ���
 ����
�
 �� 
�
 ����� ������
��
�� 
�
 	��� 	�� �� �	����	

� ��
� 
�
 !+, �� 
�
 ����

���	�� ��� � �� � ��� ���� 	� ��� � �����	����
� Æ�� �� 
�
 �
���
�#
�
	� ����
�
�
 �	����	

� ��
� 	 ���

����
�
 �� 
�
 ����� ������
�� ���� 	��


����Æ���� � � 	�� � � �� - � ��� ���� � ���

!��	���' 
�
 ������	
��� ��� �
�	��
� ����� 	�� ����� ���#
���
���' �� ���


��

� (� 
�
 ����� ������
�� �����


 � � 
�

����� ��	�� � 
����

� � �������  �������	���

� (� 
�
 �	��

�� ������
 �����


 � �
������
�

����� ��Æ���
� (� 
�
 	�� ���� �


 �
�

����� ��	�� � 
������

� .���
�
#���
	�
 �
�	
��� ��� ����� ������
�� �

�� �
�

��

��� � ��� 
�
��

�

�����

	�� ����

 
�

��


����Æ��� �
��
��
��

� .���
�
#���
	�
 �
�	
��� ��� �
�	��
� ���� �

�� � 	���  
�

�����

	�� �
��
��
��  

�

��


����Æ��� �
��
��
��

)�
�
 �' �' �� 	�� �� 	�
 �
	

 �	��	��
��

��� ������	�
� ��� 
����	��

��
 

�
 �����
� �� �
�����
� �� *���
 �� � ��������	�
����
�
 ��� � /�
� 	�� � � 0�
�� �� 
�
 ����� ������
��
�� �����
� 	�� 
�
 �����
� ����
�
 �� 
�
 �
�	��
� ����
�0��� 
����� �� ��
	��
�� �
�
� �
�
 �	���
� ��
 ��
� 	

�	���
�
 ���
�' ��� ���
	� �	

��	�� �� �� 	�� ����
� ��
��� �� ���*�� 
�
 �
���
� ���
� �� 
��� �
� ������	
����'
�
 �����

� 	� 
&���	�
�
 �����
� ��
�
 
�
 �	��

��
������
 �� ��


� �� 	 ��	�� 	���	� �
�
 	���	� �
���
	��
 ��
�
�� ��	�� ����	�
� 
� 
�
 �	��

�� ������
 �
���
	��
��

)�
� 	���	�
.���
� �	��

�� ������


���
 ���

.
�
��

�


��
�

���"���10���1���/0���/����0��������0�

2

"

/

�

#/

#"

���� �� �
��	�� 	�

�
� �� ��� ��
�
��� 	�������

��
 �
���
� 	�
 
�
 �	�
 �� ��
� �	�
��

�� �
������
� ��� ��
���	�����

���� �
� ������	
��� ����� 
	3
� ��
� 	�����
 ���
����
����
�

� �	��

�� ������
� ��������
� �� �
�	��
� �����
	�� �� ���
���� ����
�

� ����� ������
��� ������
� �� 	�

�
�
��� ������
 	����� �� 
� �	�
 	 ��	��
� �
�� ��
�	��

�� ���
���	� 	��#�	� �	� 
� �
 �
��
��� !��
�
����
'

�
 ��
 �� 
�
 �	��

�� ��	�	� ��

�
�	� �� 	� 
�������	�
	�� ���
���� 	�

��	
��
 
� 
�
 �	��

�� �
�
�� ��

�
�	��
,��
��
� 
�
 ���
� ���
	� ���

� 
� ����
 �� ����

����
��� 
��� �
�
���
�
�
 �	�
 �

� ����
�
�

� �� !45617
���
�	�
�

����
�����

��� �� ��������� �� ��
���� ��  ��
!� "� #�

���� � ��������	 
���
�	���
� 
� � �
��� ������
���� ����� �� ������ �	����� ����
�
�
��	�� �
 ������� ������
�� �$$$ #
�
�� %��
�� &��� �' 
( ��
))� �**�+�**,� ��)��-.�
 �//��

�*� 0� 1� ���	�� �� "�2�
�
� 3� �������� "� %��
��
� 4� �
�
�����
� ������� ������
���� �
��	���� �5%�$1� &��� *� 
( �� ))�
�'�+���� *''*�

��� 0� 1� ���	�� "� %��
��
� �� "�2�
�
� �� 1�.��� 4� �
�
����� 3�
�������� �
��	�� ��
�	�� �
�������
� 
� �� ��	���	 �
��
������ �������� �������� ��� �	������ ��������� �
 )
�	����
�� ��
�$�� *''*� )��� *,,�

��� "� %��
��
� 0� 1� ���	�� �� "�2�
�
� � �
� 	����� ������� �
��	��
� ��� � � �
���	���
� �
� �
	�� �
�����
��� �
 )
�	����
�� ��
�$�� *''*� )��� *,6�

��� 7�#� 1��
�� 0� %�
2�	���� �� 1�.��� �� "��
�
� "� %��
��
� �
��
��	���
� 
� ������
������ ��
�	��� �� ����� 
� �
����! �������
��� �
��	 ���	�� �
������	�� �
�		���
�� �� �
� �
��

����
�� 8�
+
���) �
 $��	�
�	 �
� %��
���	 ������ 1���� �������-�� 9+/ %�!
�//9� )) �*�+�*9�

�9� �� 3� %�!�
��!:� %� ;�  � ���
�� <� 3=�
����� � ��� ���	��
�
������	 �
���	���
� �
� �������������
��	 ������
������ ��
��
	���� �$$$ #
�
�� %��
�� &���*�� 
( 9� ))� �66/+�6/�� �/6,�

53Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Using High Order Finite Elements in Problems with Movement
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Abstract  This work analyses the use of different finite elements
(lagrange, hierarchic and hermite) to improve the calculation accuracy
when they are submitted to distortion due to the movement. The moving
band technique is used with complete elements in thin airgaps machines.
Results are shown to compare the performance of lagrange, hierarchic
and hermite elements.

INTRODUCTION

When coupling field and circuit and/or a dynamic case is
considered, the time step is variable. With electronic circuits,
having diodes for example, the time step can to be strongly
reduced to ensure correct switch transitions. In these cases
just some methods taking into account the movement can be
used.

The Lagrange multipliers technique [3] produces a
resultant matrix weakly conditioned and new formulations are
necessary for each problem. Nodal interpolation method [4]
does not ensure the continuity of the vector potential A and its
efficiency has not been yet tested on the electromotive force
calculation. The boundary element and the macro-element
method leads to a fully populated matrix in the region
associated with the movement. The Moving Band (MB)
technique, described in [1], does not have any of these
drawbacks; the resultant matrix is well conditioned and the
dynamic storage of the (anti-)periodicity conditions does not
change the size of the system. However, the distortion of the
elements and the reconstruction of their connections create
discontinuities on the electromotive force (e.m.f.). The
contribution of this paper consisting in using high order finite
elements to reduce the sensibility of the solution to the
distortion of the elements.

MOVING BAND WITH HIGH ORDER ELEMENTS

The use of complete or modified elements inside the
moving band, with the remaining mesh with first order ones,
improve significantly the f.e.m results. For modified elements
in the moving band, the lower and upper boundaries have
linear interpolation [2]. However, in cases with thin airgaps,
complete elements have to be used. For this, transition
modified elements (with linear interpolation on two sides and
high order one on the remaining one, as shown in Fig. 1.) are
placed between the moving band and the remaining mesh.

Lagrange Elements

The interpolation functions may be obtained in this case
using the expression:

N(u,v)=P(u,v)C
-1, (1)

where P(u,v) is the polynomial base and C is a matrix in which
each row is the node coordinates of the element substituted in
the polynomial base. Here, it is tedious to obtain the
interpolation functions for modified transition elements. The
matrix C is usually singular in this case and its necessary to
try different combinations of polynomial base and node
coordinates. A software is proposed in [6] to overcome this
problem. Moreover to obtain a balanced solution, the
polynomial base must have the geometry isotropy property,
meaning that for each term of the form urvs there is also a
term usvr. Another approach is to impose a linear constraint
equation handling the mid side DOF (degree of freedom). The
interpolation functions of a modified element can be obtained
by:

Nm=NcT, (2)

where Nc is the vector of interpolation functions of a
complete element and T the transformation for the rows
having a constraint equation.

Hermite Elements

The hermite elements consider not only the function value
at the nodes but also its derivatives with respect to x and y.
The interpolation function may be obtained also by
expression (1) by including in the rows of C the derivatives of
the polynomial base at each node. This type of element
enforces the continuity of the function derivative at the nodes.
Then, the lagrange-hermite transition elements (Fig. 1(b))
have to be placed in the air to allow the refraction of magnetic
field. The same difficult, as for lagrange elements, appears to
generate the interpolation functions of the modified transition
lagrange-hermite elements.

Hierarchic Elements

The hierarchical concept is to obtain the high order
interpolation functions from the low order ones. By using the
Legendre polynomials [7], the second order hierarchic
function for the edge ij are:

Nij=KNiNj, (3)

where Ni is the standard first order shape function and K is a
constant. For cubic interpolation:
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Nij=KNiNj(Nj-Ni). (4)

In this case, for a complete polynomial base, it is
necessary to include an internal hierarchic function, which are
identically zero on the boundaries. The function N1N2N3

could be used. To generate transition elements is necessary
only to eliminate the DOF of high order functions. Moreover
the hierarchic functions due to the orthogonality of the
Legendre polynomials produce a better conditioned system
than lagrange elements, and, in the case of moving band, the
(anti-)periodicity boundary conditions are imposed as for
lagrange or hermite elements, without the need of
transformations.

Fig.1 Moving band with lagrange (a) and hermite (b) cubic elements

RESULTS

The results presented in Fig. 2, for a permanent magnet
machine with thin airgap, show that for this case the
hierarchic cubic complete elements produce excellent results.
With lagrange cubic complete elements, as shown in Fig. 3,
we obtain the same result as for hierarchic ones. The
simplicity to obtained the shape functions and the better
conditioned resultant system indicate the hierarchic elements
as the more interesting ones. The hermite elements, however,
are very sensitive to the deformation produced by de
movement (Fig. 4). When there is no deformation, the three
types of interpolation yield the same result.

CONCLUSION

The moving band technique may produce excellent results
even in thin airgap machines, if high order complete lagrange
or hierarchic elements are used inside it. Complete elements
in the MB avoid a very dense mesh in the remaining part of
the domain. At this point of our investigation, the hermite
elements, from our tests concerning e.m.f., are very sensitive
to deformation, especially in complex geometry machines
with thin airgaps. So, it seems that there is no advantage on
enforcing continuity higher than what Co lagrange or
hierarchic elements have.

Fig.2 E.m.f at 200 rpm. Time step 0.1 ms.

Fig.3 E.m.f at 200 rpm. Time step 0.1 ms.

Fig.4 E.m.f at 200 rpm. Time step 0.1 ms.
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Abstract— A weighted-residual method is presented to address
the problem of coupling two separate meshes sharing a common
boundary. It is shown that the imposition of a potential continuity
condition together with a suitable penalty constant can be used
to achieve the coupling. The further requirement of continuity
of the normal derivative results in a quicker convergence. A
magnetostatics test problem in two dimensions is used to verify
the scheme. The method can be used in movement simulation of
magnetic devices.

I. INTRODUCTION

The problem of taking into account the movement of certain
parts of magnetic devices has received considerable attention.
Several approaches have been proposed, among them the remesh-
ing of the geometry, the use of a slip band, analytic solutions in
the airgap and coupling with integral formulations. The method
of Lagrange multipliers has been successful in providing a
general method, with applications in two- and three-dimensional
problems [1], [2]. It has been argued, however, that the use
of these Lagrange multipliers results in an increased number
of degrees of freedom in the problem and makes the global
matrix non-positive definite, which may be undesirable features
in certain applications [3].

This paper addresses the problem of mesh coupling from the
point of view of the finite element weighted-residuals formulation,
with the aim of circumventing these shortcomings. In this scheme,
no additional degrees of freedom are required to achieve the
coupling. Only the two-dimensional magnetostatic case in terms
of the z component of the magnetic vector potential is considered.
However, the same ideas may be applied to the three-dimensional
case in terms of the magnetic scalar potential [2].

II. THE CONVENTIONAL LAGRANGE MULTIPLIERS

METHOD

For the magnetostatic field problem in terms of the magnetic
vector potential component Az (for two-dimensional problems),
the coupling condition

Aa − Ab = 0 (1)

is imposed on Γc, the common boundary between meshes a and
b. An augmented functional is constructed, given by

Π′ = Π +

∫
Γc

λ(Aa − Ab)dΓc, (2)

where Π is the functional for the uncoupled problem and λ is the
Lagrange multiplier. The value of λ at each node in the boundary
Γc is treated as an additional degree of freedom, and additional
rows are added to the global stiffness matrix in the form

Kλ
i =

∫
Γc

Na
i

(
Na − Nb

)
dΓc, (3)

where Na
i is the shape function for node i in mesh a, and Na,

Nb are the vectors of shape functions in meshes a and b. The
nodes in mesh a along the boundary Γc have an extra degree of
freedom corresponding to λ. The integration (3) is calculated on
the corresponding boundary of only one of the meshes.

III. GALERKIN FORMULATION OF THE COUPLING

CONDITION

The equation for the two-dimensional magnetostatic field
problem is

∇ · (ν∇Az) + Jz = 0, (4)

in the domain Ω with boundary Γ. The corresponding weak
formulation is∫

Ω

ν∇w · ∇AzdΩ −
∫

Ω

wJzdΩ −
∮

Γ

wν
∂Az

∂n
dΓ = 0, (5)

where w is the weighting function. The directional derivative in
the normal direction n appears in the boundary integral. In the
Galerkin formulation the weighting function is the node shape
function Ni, and (5) leads to the element equation row

m∑
j=1

Aj

∫
Ω

ν∇Ni · ∇NjdΩ −
∫

Ω

NiJzdΩ −
∮

Γ

νNi
∂Az

∂n
dΓ, (6)

in which m is the number of nodes in the element.
The coupling condition (1) stating the continuity of the

potential can be imposed by adding the following integral to
the left hand side of (5):∫

Γc

w(Aa − Ab)dΓc. (7)

Taking Ni as weight again, this results in the following expres-
sions being added to (6):

α

∫
Γc

Na
i

[
ma∑
j=1

Na
i Aaj −

mb∑
j=1

Nb
i Abj

]
dΓc, (8)

α

∫
Γc

Nb
i

[
−

ma∑
j=1

Na
i Aaj +

mb∑
j=1

Nb
i Abj

]
dΓc. (9)

The α constant is a penalty number which has to be added
since the integrals in (8) and (9) are several orders of magnitude
smaller than the entries in (6). Two terms are necessary to
preserve the symmetry of the global matrix and each boundary
integral is carried out on the corresponding mesh, contrasting to
the Lagrange multipliers method where only one integration is
required. The inverted signs reflect the fact that the directions
of integration in the two meshes are opposite.

The scheme described above has been implemented in a
computer program. Results for a test problem are presented in
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Fig. 1. Superposed contours of Az for single mesh and coupled mesh,
with potential continuity condition. Penalty constant α = 108. The coupling
boundary is clearly visible.

Fig. 1 in which the superposed contours of Az are displayed
for both a single-mesh model and a coupled-mesh model, with
a penalty constant α set to 108. This is two to three orders of
magnitude larger than the uncoupled-mesh terms in the stiffness
matrix. Only the absolute value of the penalty number is relevant,
the sign can be either positive or negative.

Correct results are obtained even for very large penalty
constants: values up to 1020 were verified before the penalty
terms dominate the solution. Values outside the range 108 −1020

give incorrect results. For a penalty number slightly smaller than
the lower value of this range, the values of potential are still
reasonably accurate, but the contour plots are jagged at the
interface. For the contours transition at the boundary to be
smooth, a sufficiently large α has to be set, and the process
for its selection is one of achieving convergence: subsequently
larger values are tried until a predefined tolerance is met. Once
determined for a given type of problem, the penalty number may
be confidently used in subsequent cases.

IV. WEIGHTED-RESIDUAL FORMULATION FOR NORMAL

DERIVATIVE CONTINUITY

The normal derivative term in (5) suggests a further coupling
condition requiring it to be continuous along the common
boundary. The additional integral would be∫

Γc

wν
(

∂Aa

∂n
− ∂Ab

∂n

)
dΓc. (10)

In this case, the use of Ni as weighting function leads to an
asymmetric matrix. We avoid it by using the normal derivative
as weight, with the additional stiffness entries given by:

β

∫
Γc

ν
∂Na

i

∂n

[
ma∑
j=1

∂Na
i

∂n
Aaj −

mb∑
j=1

∂Nb
i

∂n
Abj

]
dΓc, (11)

β

∫
Γc

ν
∂Nb

i

∂n

[
−

ma∑
j=1

∂Na
i

∂n
Aaj +

mb∑
j=1

∂Nb
i

∂n
Abj

]
dΓc. (12)

The β constant is another penalty number. We have used α = β
and obtained satisfactory results, as can be appreciated in Fig.
2, which shows the contours for both a single-mesh model and
the coupled-mesh model, for a penalty constant of 102.

Fig. 2. Superposed contours of Az for single mesh and coupled mesh,
with potential and normal derivative continuity conditions. Penalty constant
α = 102

As in the case of the potential continuity condition alone,
the values of potential are relatively immune to variations in
the penalty constant in a wide range. In this case, where both
the potential and its normal derivative are used as coupling
conditions, the range of acceptable values for the penalty constant
is 102 − 1012.

Despite the increased computational cost of imposing both of
the potential continuity condition (7), and the normal derivative
condition (10), the scheme has the advantage of requiring a much
lower value of the penalty constant α, which translates in a better
conditioned global stiffness matrix.

V. CONCLUSIONS

The conventional Lagrange multipliers method for mesh cou-
pling was briefly reviewed, and the implementation of the corre-
sponding coupling condition presented in form of an equivalent
Galerkin formulation. In the latter, a penalty number is necessary
to correctly couple the meshes, and guides for its selection were
discussed. A more complete mesh coupling scheme which relies in
the continuity both of the potential and of its normal derivative
was outlined. This new scheme was found to be quicker to
converge in the sense that a smaller penalty constant is required;
this has the advantage of resulting in a better conditioned global
matrix. For both methods, the range of allowable values of
penalization was found to span around ten orders of magnitude.
Also, the solution is remarkably immune to the magnitude of the
penalty number inside the allowable range.
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A 3D Overlapping Finite Element scheme for modelling movement

H.C. Lai and D. Rodger
University of Bath,
Claverton Down,
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� � � � � � � �
—This paper describes a 3D overlapping finite el-

ements scheme for modelling moving eddy currents problems in
which motion of the moving part causes the air gap between it
and the non-moving part to change continuously with time.

I. INTRODUCTION

The finite element method, in its standard form, is not
suited to model electromagnetic problems which contain air
gaps that change constantly in size due to the present of parts
that move in a linear fashion. Examples of these include
the modelling of electromagnetic actuators that produce lin-
ear stroke motion and jumping eddy current disc type exper-
iment. To tackle this type of problem, the coupled Bound-
ary Element-Finite Element method[1] or even some form of
remeshing technique[2] can be used.

In this paper, we describe an alternative 3D finite element
scheme which can be used to solve this type of problem. The
scheme allows one 3D finite element mesh to move freely
within the space occupied by a second independent 3D finite
element mesh. The two meshes are not ‘joined’ together and
remain as two separate meshes at all times. The immediate ben-
efit of this flexibility is that modelling devices at many different
air gaps can now be carried out without the need to produce a
new finite element mesh for each air gap. Moreover, simula-
tions of devices in which the size of air gaps change dynami-
cally with the motion of the moving parts can now be readily
carried out.

In a previously published paper[3], we have presented an
overlapping elements scheme which works in 2D only. The
verification of the method using experimental results was also
demonstrated. This paper shows how the previous 2D scheme
is extended to deal with 3D cases.

II. OVERLAPPING ELEMENTS

In 3D Finite Element problems, we use the magnetic scalar
potential � and the reduced scalar potential � to model non-
conducting regions while conducting regions are modelled us-
ing the magnetic vector potential. The following equations are
solved for: 	 
 � � 
 
 � � � scalar regions (1)

	 
 � � � 
 � � � reduced scalar regions (2)


 � � �� 
 � A � � 	 � � � A� � � conducting regions (3)

The scheme used in this paper allows one finite element
mesh to be ‘embedded’ inside another finite element mesh.
This is illustrated with a simple diagram shown in Fig. 1. For
clarity, the figure depicts the meshes and elements as 2D ob-
jects. In our case, however, both are 3D objects.

Contribution from a Slave element
only comes from the stippled area

Overlapping volume  (Master mesh)

Master mesh

Master mesh
boundary

Slave
mesh

Fig. 1. Overlapping meshes.

Electromagnetically, the two meshes in Fig. 1 represent two
independent domains and there is no interaction between them.
To couple the two meshes together, the Lagrange Multipliers
method is used [4]. The method weakly enforces the following
constraint at the boundary surface between the two meshes.� master 	 � slave � � (4)

In the case of Fig. 1, the boundary surface coincides with
the outer faces of the elements of the inner master mesh. The
‘embedding’ of one mesh inside another mesh results in finite
elements from both meshes overlapping one another. These
overlapping finite elements are dealt with using the master-
slave elements approach. In this approach, one mesh is as-
signed the master mesh and the other one the slave mesh. Slave
elements that overlap with the elements in the master mesh
have to be dealt with in such a way that the contributions from
one of these elements to the system matrix only come from
that portion of the element outside the boundaries of the mas-
ter mesh.
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III. SIMULATIONS

The 3D overlapping scheme was used to model a jumping
disc problem. The model contains a conducting cylindrical disc
placed concentrically above a set of cylindrical coils in which
a 50Hz AC current flows. The finite element model of the set
up contains two meshes, the master and the slave mesh. The
master mesh discretised the disc and the air in its immediate
vicinity. The slave mesh is the mesh that discretised the coil
and all the surrounding air. Fig. 2 shows a 3D view of the finite
element model used. The 3D model has about 120,000 nodes,
120,000 elements and 130,000 unknowns.

FILE  : 

Fig. 2. Computer model.

The upward force acting on the conducting disc at different
fixed height from the coils when a 50Hz AC current is flowing
in the latter was calculated with the new scheme. The results
are shown in Fig. 3. This series of calculations were also re-
peated using standard finite element meshes, one mesh for each
case. The results are also shown in Fig. 3 for comparison.
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Fig. 3. Graph of upward force on disc against height of disc.

IV. CONCLUSIONS

A time-transient simulation of the vertical movement of the
disc under the influence of the field generated by the coils was
carried out. In the simulation, the disc was constrained to move
only along in the axial direction. In another words, there is
no sideways and twisting movement. Fig. 4 shows the graph
of the disc height against time. The same graph also shows
the results of a 2D axi-symmetric simulation of the movement
of the disc using a previously verified 2D overlapping finite
element scheme[3]. The discrepancies observed in Fig. 4 are
most likely due to the fact that the 3D mesh used is coarser that
the 2D mesh.
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Fig. 4. Graphs of vertical displacement against time.

V. CONCLUSIONS

This paper described a new 3D overlapping finite ele-
ment scheme which allows electromagnetic problems with con-
stantly changing air gap sizes to be modelled conveniently. The
new scheme was used to modelled a jumping disc problem and
the results compare well with the previously verified 2D finite
element method.
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Abstract � A Finite element formulation to compute induced 
currents into the human body due to low frequency magnetic field is 
described. Magnetic source field and induced currents are computed 
separately, allowing to handle sources due to realistic devices. This 
method is validated using analytical solutions over a sphere. The limit of 
validity of the formulation is established. Computations using an 
accurate model of the human body are presented. 

INTRODUCTION

The daily exposure to an electromagnetic environment 
raises the question of the effects of low frequency (LF) 
magnetic fields on human health. The accurate assessment of 
the currents induced in the human body by a time varying 
magnetic field is a major issue, not only for its relevance in 
medical research, but also for its implications on the 
definition of industrial standards [1]. Generally, either the 
magnetic source or the geometric model of the human body 
are considered to be very simple. As example in [2], the 
magnetic field is assumed to be uniform, or at most generated 
by a wire system. Our purpose is to compute accurately the 
currents induced into the human body by realistic devices, 
such as transformers, motors or electronic article surveillance 
devices. In this paper, a method based  on a finite element 
(FE) discretization of the A-� formulation is presented, 
allowing to compute separately the magnetic source field and 
the induced currents into the human body. The formulation is 
first presented. It is then validated and frequency limits of 
validity are established. Computations using an accurate 
model of the human body are finally presented. 

FINITE ELEMENT FORMULATION

Let A be the vector magnetic potential generated by the 
device in the free space, and � the region occupied by the 
human body. At low frequency, displacement currents are 
negligible. Moreover, due to the low values of conductivity of 
the human tissues, the magnetic field is not modified in an 
appreciable way by induced currents into the human body [3], 
so that the electric field E is given by: 

���

�

�

�����

�

�

����

tt
AEAE (1)

Assuming that the vector potential A is known, the scalar 
potential � needs solely to be found over � in order to 
compute the current density J=�E. The Galerkin form is 
obtained by using the charge conservation law: 

� �� ����
�

��������� 0dWj A (2)

where W is the weighting function. It is solved by the FE 
method with classical nodal elements. There are two main 
advantages to such a formulation, compared to a general one. 
First, the induced currents are computed separately from the 
magnetic source field, which obviously represents a great 
simplification. It is then possible to use accurate geometric 
models for both the magnetic source device and the human 
body. Second, conductivities of the human tissues [4] (Table 
I) are not of the same order than those of the electrical 
devices, leading to ill-conditioned matrices. By decoupling 
both problems – the magnetic vector potential due to the 
source, and the induced currents into the human body – better 
solving may be obtained. 

TABLE  I
CONDUCTIVITIES OF USUAL HUMAN TISSUES

10 Hz 1 kHz 10 kHz 100 kHz 1 MHz 
Fat 0.0122 0.0224 0.0238 0.0244 0.0251 
Muscle 0.2020 0.3211 0.3408 0.3618 0.5027 
Bone 0.0756 0.0815 0.0204 0.0839 0.0244 
Kidney 0.0544 0.1127 0.1377 0.1713 0.2782 
Liver 0.0277 0.0414 0.0535 0.0846 0.1866 
Blood 0.7 0.7 0.7 0.7029 0.8221 
Intestine 0.5111 0.5324 0.5597 0.5942 0.8649 
Bladder 0.2028 0.2076 0.2130 0.2189 0.2361 

VALIDATION OF THE FORMULATION

In order to validate the method, numerical results have 
been compared with exact solutions over a sphere [5] on the 
basis of the criterion error : 

� ��

V anEF
an

1 dv
)Vmax(

1)( EE
E

E (4)

where EEF is the FE solution and Ean is the analytical electric 
field. As shown in Table II, good agreement is found. The 
numerical solution converges toward the exact one when the 
mesh size is reduced. 
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Fig. 1. Magnitude of the electric field on the sphere due to a space dependent 
magnetic field (f=100 kHz,�=1, �r=1, a=0.1m). Left: analytical solution [5], 

right: numerical solution (2982 nodes) 

TABLE  II
ERROR CRITERION DEPENDING ON THE MESH SIZE

Number of 
surface 
points 

Number of 
nodes 

Number of 
elements 

Error on 
potential 

Error on 
magnitude of 

the field 
100 132 427 2.31% 3.81% 
200 229 651 2.86% 3.99% 
400 510 1676 1.64% 2.28% 
500 1775 9075 0.45% 2.20% 
850 2982 15309 0.38% 1.75% 

The effectiveness of the formulation has been checked by 
comparing the results with those obtained using a general 
vector potential formulation, computed with the FLUX3D
package [6]. The electric field induced in a sphere by a 
circular coil is computed for different values of the product 
�f, where � is the conductivity of the sphere and f is the 
frequency of the source currents. Fig. 3 shows that the 
threshold of validity of the formulation is found in the range  
10 < �f < 107

�
��s-1m-1. From the values of conductivity of 

the human tissues (table I), it is seen that the formulation can 
be used for a wide range of LF magnetic source fields. 

Fig. 2. Magnitude of the electric field on the sphere (f=100 kHz, �=1, �r=1,
a=0.1m) induced by a circular coil. 
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Fig. 3. Comparison with a general formulation: error criterion depending on 
the product �f. 

CURRENTS INDUCED BY A SERIES AC MOTOR

As example, the currents induced in a human body by an 
AC motor are computed. The mesh of the human body is 
created from 60 Computerized Tomography scans. It is made 
of 182650 elements and 33181 nodes. The vector magnetic 
potential due to the motor is computed separately using the 
FLUX3D package, with 16163 nodes. Two orientations of the 
motor are compared (fig. 4). The axis of the motor is first 
located vertically. Second, the rotor is rotated toward the 
human body in such a way that the distances are unchanged. 
It is observed that in the first case the induced currents are 
larger due to the flux leakage. 

Fig. 4. Electric field for 2 orientations of the AC motor. 

CONCLUSIONS

A method to compute the currents induced by realistic 
devices in the human body is presented. It can be used for a 
wide range of LF magnetic sources. It allows to describe 
accurately both radiating device and human body.  
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Abstract � Classifier based on support vector machines (SVMs) has 
had successful applications in many fields for it's simple structure and 
excellent learning performance. In this paper we apply such classifiers to 
estimate the multiplicity of the sources of the electroencephalogram 
(EEG), and use them to determine the number of active current sources 
according to the potentials recorded on the scalp. Experimental results 
indicate that SVM classifier is an effective and promising approach for 
this task. 

INTRODUCTION

Support vector machine is an effective machine learning 
method proposed by Vapnik et al. for general purpose pattern 
recognition [1-2]. Based on the idea of VC dimension and the 
principal of structural risk minimization, a SVM is intuitively 
a two-class classifier in the form of a hyperplane which 
leaves the largest possible fraction of points of the same class 
on the same side, while maximizing the distance of either 
classes from the hyperplane. The points of either classes 
which have closest distance to the hyperplane are called 
support vectors and the distance is called margin. The 
hyperplane, called optimal separating hyperplane (OSH), 
minimizes not only the empirical risk, but also the expectant 
risk, and thus has better generalization ability compared with 
traditional classifiers. Because of their excellent 
performances, SVMs have been successfully applied to many 
fields. 

Electroencephalogram is the integrated representation of 
the electric biological activities of the neuron groups within 
the brain on the scalp after being conducted by the volume 
conductor (including the cortex, cerebrospinal fluid, skull, 
scalp, etc.) [3]. Interpretation of the clinical EEG almost 
always involves speculation as to the possible locations of the 
sources inside the brain that are responsible for the observed 
potential distribution on the surface of the head. Generally, 
bioelectromagnetic field is viewed as a quasistatic current 
system and the EEG sources are modeled as current dipoles. 
Localization of focal electrical activity in the brain using 
equivalent dipoles, is usually performed by iteratively 
modifying the parameters of the model source, until optimal 
correspondence is reached between the observed and the 
predicted potential vectors on the head. So it is necessary to 
choose the source configuration that can satisfy all of the 
known constraints in advance. However, in most applications 
the exact forms of the source are difficult to know. For 
example, in single time-slice source localization, there is no 

quantitative way of estimating the multiplicity of the sources. 
But if the number of dipole sources is not correctly estimated 
beforehand, it is likely that none of the predicted source 
locations will be correct. 

In this paper, the practice of using SVM to determine the 
source multiplicity is carried out. In our experiments, training 
samples are formed by solving EEG forward problem on the 
source model assumed. During the training process, the SVM 
based classifier builds up its own memory reflecting the 
relationship between the scalp potentials and source models. 
Then, it can give out the dipole source multiplicity when new 
EEG data are given. 

METHOD

Usually, support vector machines perform pattern 
recognition for two class problems by determining the 
optimal separating hyperplane. Given a training set 
S: )},(,),,{( 11 ll yy xx � , where n

i R�x  is the data point and 
l

iy }1,1{ ���  is the class label, constructing OSH can be 
expressed as: 
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If the data is not linearly separable in the input space, a 
non-linear transformation )(�� can be applied which maps the 

data points n
i R�x  into a Hilbert space H and an OSH is 

found there. The mapping )(�� is represented by a kernel 
function ),( ��K , which defines an inner product in H, i.e. 

)()(),( jiji xxxxK ���� . Eventually, through introducing 
Lagrange multipliers and using Karush-Kuhn-Tucker (KKT) 
conditions, we can transform the problem of constructing an 
OSH into solving a linearly constrained quadratic 
programming problem in a number of variables equal to the 
number of data points [1-2]: 
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where i�  is Lagrange multiplier, l is the number of training 
points, and C > 0 is an penalty factor allowing for non-
separable cases (or imperfect separation). In the solution of 
(1), only a fraction of the i� ’s (suppose m) will be nonzero 
and data points connected to them are the so-called support 
vectors. Then the decision function of SVM gets the 
following form: 

)),(sgn()(
1

* bKyf
m

i
ii �� �

�

ji xxx �                    (3) 

where *
i�  represents support vector, and the classification 

threshold b can be computed by using any support vector 
which satisfies the equation constraint in (1) or by using any 
two of the support vectors carrying out the same computation 
and then take the median. 

While SVMs were initially proposed for two-class 
problems, there has been ways for combining many binary 
classifiers into a multiclass classifier [1]. One of the widely 
used is the voting scheme. In a q class problem, training 

2/)1( �� qq  so-called one-vs-one binary classifiers with 
each separates a pair of classes; then in the test stage, a point 
is inputted into all the classifiers, each classifier gives a vote, 
and the class which gets the most votes will be the final 
output. 

SIMULATION RESULTS

A four-concentric-shell structure with different 
conductivity values (0.33, 1, 0.0042, 0.33) s.m-1 respectively 
representing the brain, cerebrospinal fluid, skull and scalp is 
used as a head model, and their relative radii are (0.8, 0.85, 
0.92, 1) cm. Using this four-shell spherical head model and 
considering the case in which the number of simultaneously 
active dipoles is one, two, or three. In order to obtain the 
training and testing samples, we assume random dipole 
location vectors whose three components obey the uniform 
distribution are independently generated, and then the dipole 
moments are generated randomly using the zero-mean, unit-
variance Gaussian distribution. Once the source models were 
formed, we solve the forward solution for each model to form 
the respective sample set [4], over 138 measurement points 
corresponding to 138 channel measured EEGs. In this way, 
we have obtained four sample sets, one for training, and the 
other three for testing as shown in table I. 

TABLE I. THE NUMBER OF PATTERNS IN EACH SAMPLE SETS

Training set Test set No.1 Test set No.2 Test set No.3 

4500 7876 12292 12422 

Each pattern was composed of two parts, 138-dimension 
scalp potentials and 1-dimension target value (the number of 

active EEG sources). We trained three one-vs-one binary 
classifiers using Gaussian kernel: 

22 2/||||exp(),( �jijiK xxxx ���

with 2
�  the variance of the Gaussian. The best result was 

obtained using the classifiers trained with C=300, 2
� =0.5 (on 

our computer, a 1.5GHz Pentium PC, it needs 29 seconds to 
train). Table II gives the classification results on the test sets, 
using voting schemes to combine the binary classifiers. 

TABLE II. TEST RESULTS FOR THREE TEST SETS

Test set No.1 Test set No.2 Test set No.3 

Accuracy 

%)100
total

correct( �

99.39% 99.51% 99.05% 

Time (seconds) 35.8 53.5 53.7 

As we can see, the classification results are excellent and 
the time needed almost linearly scales with the sample size 
which assures the dynamic analyses of EEG. To further check 
the validity of the classifiers when the input is corrupted by 
noise, we add a 10dB normally distributed noise to the test 
data and test again. The results are also optimistic as shown in 
table III (the time is nearly the same as in table II). 

TABLE III. TEST RESULTS FOR NOISY DATA

Test set No.1 Test set No.2 Test set No.3 

Accuracy 

%)100
total

correct( �

97.18% 97.70% 94.71% 

CONCLUSION

SVM classifiers with Gaussian kernels are used to classify 
the number of EEG current sources, and experimental results 
showed great efficiency. Further study will be focus on 
determining the distribution of dipoles of different shapes 
according to the scalp potentials. 
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Abstract – A method of shape optimization combined with  
finite element analysis is applied to simulate the real magnetic field 
with deviation in a permanent magnet for magnetic resonance 
imaging (MRI) device. Based on the real field the passive shimming is 
carried out to elevate the homogeneity of the field in a large imaging 
space. With the improved genetic algorithm and Hook-Jeeves method 
as the searching tools, the size and locations of the ferromagnetic 
shimming pieces could be readily determined, and the high 
uniformity of the magnetic field is approached using the method 
proposed in this paper.  

INTRODUCTION

The main magnet is the primary part in magnetic 
resonance imaging devices. It is required that the 
homogeneity of the magnetic field created by the magnet 
should be high up to the order of 10-5-10-6 in a large 
imaging space. Although an ideal design of the magnet can 
reach such a high target, the homogeneity is reduced by the 
manufacturing deviation. Therefore the active and passive 
shimming are needed to increase the uniformity of the field 
[1,2]. Most of the papers published used analytical methods 
to implement the shimming, in which  the magnetic field 
in the imaging space is decomposed  into spacial 
harmonics of spherical coordinate at first, then the 
shimming pieces are placed in proper locations to cancel 
the deviation of the field. This is a repetitive process of 
testing and attempting. 

This paper presents a new method which is based on 
numerical analysis of the magnetic field and optimization 
strategy, that is, applying the technique of shape 
optimization developed in computational electromagnetics 
during recent years to the passive shimming of the 
permanent main magnet of MRI. With this method, the 
locations, size and numbers of the shimming pieces could 
be determined rapidly and the shimming time be reduced 
significantly.   

DESCRIPTION OF THE METHOD

Figure 1 is a model of a permanent MRI magnet. The 
distribution of the ideal magnetic field created by the 
magnet is shown in figure 2. 

Fig.1 Configuration of the permanent MRI magnet 

Fig. 2 Ideal magnetic field distribution of the magnet 

A. Simulation of the real field 

Different from the analytical method aiming at the 
deviated field obtained by measurement, the method of 
numerical optimization for shimming has to start with the 
real whole field with the deviation. Therefore, we should 
simulate the real magnetic field produced by the magnet 
corresponding to the measured values at first.  

The simulation could be done as follows. Based on 
the configuration of the main magnet shown in Fig. 1, 
place small cavities and pieces of iron at the proper 
locations around the imaging region to simulate the defects 
of the configuration sizes or material characteristics 
resulting from manufacturing. With the finite element 
analysis as the tool of optimal target evaluation and the 
optimization method described in the next section as the 
searching tool, the simulation of the real field is 
implemented. When the criterion given as 

),,2,1(' 1 mnBB nn ���� �          (1) 

is satisfied, it is considered the distribution of the simulated 
magnetic field in the imaging region is close to the real 
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field (see Fig.3). In (1) nB stands for the flux density at the 
measured point n in the real field, 'nB for the flux density 
at the corresponding point in the simulated field, 1� for the 
controlling tolerance, m for the number of sampling points. 

It is worth noting that in general the solution of a 
inversion problem may not be unique. That means the 
simulated field with cavities and pieces of iron may not be 
(or almost always not be) the solution of the whole 
real-field, but it could be very close to the real field within 
the given region of interest, so that this un-uniqueness does 
not affect the correct determination of the size and 
locations of shimming pieces. 

Fig. 3 Distribution of the simulated magnetic field 
(1, 3, 4, 6 �  Small piece of iron; 2, 5, �  Small cavity ) 

B. Implementation of the passive shimming 

To compensate the field distortion the small shimming 
pieces of iron are placed in proper locations. The feasible 
region of the locations could be determined by experts’ 
experience. In general, the bigger pieces put in the middle 
of working region at the surface of the wall will “converge 
the flux lines”; while the little ones put around the working 
region at the wall surface could “make the flux lines flat”. 

The shimming process to accomplish the 
compensation is similar with the method mentioned in 
section A, whereas the starting point is the simulated field 
shown in Fig. 2 instead of the field produced by the ideal 
configuration of the magnet.   

The criterion for the satisfied result of the passive 
shimming is given by 

2
0

0''
��

�

B
BBn (2)

where ''nB is the flux density in the optimized field at the 
position corresponding to the measured point n in the real 
field; 0B is the flux density at the center of the optimized 
field and 2� is the controlling tolerance for homogeneity. 
Fig. 4 shows the flux lines of the magnetic field after 
shimming.  

C. Selection of the optimization method 

An improved genetic algorithms combined with the  

Fig. 4 Distribution of the magnetic field after shimming 

(1, 2, 3, 4 � Shimming region) 

determined searching of Hook-Jeeves method is developed 
as the optimization strategy. Different from the ordinary 
operations, i.e. reproduction, crossover and mutation, of 
conventional genetic algorithms, the alternating between 
the fixed probabilities of crossover and mutation and the 
self-adapting probabilities[3] integrated with the individual 
protection tactics are adopted, which speeds up the 
convergence considerably.  

NUMERICAL RESULTS

In the example described in this paper, the 
inhomogeneity of the magnetic field in the region of 
interest is up to 66.7 ppm. It is reduced to 39.0 ppm after 
the numerical optimization and shimming.  

CONCLUSIONS

A numerical shape optimization method with finite 
element analysis is applied to the compensation of the 
magnetic field distortion of a permanent MRI magnet 
caused by manufacture tolerance. Based on the simulation 
of the real field and the improved genetic algorithms 
combined with Hooke-Jeeves search the proper size, 
positions and numbers of the shimming pieces can be 
indicated, which is helpful for the implementation of the 
compensation. 
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Abstract � A novel multi-dipole searching technique using moving 
dipole concept is proposed for magnetoencephalography (MEG) source 
localization. Since the number of dipoles needs not to be given a priori,
the proposed method can be a promising method to resolve the critical 
disadvantage of the conventional equivalent current dipole methods. 
From some simulation results, the accuracy and effectiveness of the 
method are verified. 

INTRODUCTION

Functional localization of the human brain have attracted 
much interest recently for many researchers. Nowadays, to 
reconstruct the brain electric sources, measurements of 
magnetic fields outside the head is frequently used instead of 
the conventional electrical potential measurements. Usually, 
such a process is called magnetoencephalography (MEG) 
source localization. Among the various localization methods, 
the equivalent current dipole (ECD) method is widely used 
because it is not only very easy to apply but also very 
accurate for most of problems. The ECD method assumes 
dipolar current sources to approximate the electrical current 
in a small brain area. The spatial parameters of dipoles are 
then determined by using some optimization algorithms [1].  

However, the ECD has a critical limitation that the 
number of current dipoles should be given a priori. Generally, 
the number of dipoles is assumed according to the number of 
stimuli. However, when no stimulus is given or when 
multiple stimuli are delivered simultaneously as a higher-
order cognitive process, it is impossible to estimate the 
number of dipoles in advance. 

In this paper, a novel technique is proposed to solve this 
problem. To begin with, numerous dipoles are randomly 
dispersed in a source space. Then, during the optimization 
process, some dipoles are eliminated or merged into other 
dipoles. Design sensitivity analysis with steepest decent 
update scheme is used for the optimization. Through the 
processes, exact dipole parameters can be obtained without 
any prior information on the number of dipoles. From some 
simulation results, the usefulness and effectiveness of the 
method will be verified.  

MEG SOURCE LOCALIZATION

A. An MEG System 

The human head was modelled as a homogeneous 
conducting sphere. This assumption is usually acceptable 
except for some special cases. The magnetic field due to the 
brain electric activity was measured by superconducting 
quantum interference device (SQUID) systems. The SQUID 
system used for the simulation is shown in Fig. 1. The 87 
hemispherical sensors can measure the radial component of 
magnetic fields outside the brain. The distance between the 
sensors and the head surface was assumed to be 25 mm. 

Fig. 1. Structure of sensors and head model. 

B. Forward Solutions 

For the given head model, volume conductor effects can 
be expressed as an analytic formula. The magnetic field 
measured at sensor positions can be calculated by using 
Sarvas’s formula [2]. 

C. Proposed Algorithm 

To realize the proposed method, a lot of dipoles should be  
handled simultaneously. Therefore, the sensitivity analysis, 
which is a kind of deterministic algorithm, was adopted for 
this study [3]. The proposed optimization procedure is as 
follows:

Step1: m dipoles are generated randomly in a source space. 
To prevent dipoles from converging to a local optimum at the 
initial stage, dipoles were generated at a constant distance. 

Step2: The objective function for sensitivity analysis is 
defined as 
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where, Bci represents the calculated magnetic flux density and 
Bfi the forward one with 20-dB Gaussian noise. Design 
variables of a dipole consist of position vectors (xQ, yQ, zQ)
and dipole vectors (Qx, Qy, Qz). For each iteration, design 
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sensitivities of the the design variables were calculated. The 
sensivity can be expressed as 
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Step3: The number and parameters of dipoles were
determined on the basis of calculated sensitivities, using 
steepest decent updating scheme [4]. If a distance between 
adjacent dipoles is shorter than a criterion value (20 mm), 
they were considered as a single dipole. Meanwhile, if the 
amplitude of a dipole is smaller than a predetermined value 
(70 % of maximum value), the dipole was eliminated. 

Step 4: From the results of Step3, the objective function 
for the sensitivity analysis is recalculated with a reduced 
number of dipoles. The process of (Step2 – Step3) was 
repeated until a terminating condition was met. 

SIMULATION RESULTS

To verify its effectiveness, the proposed method was 
applied to single- and multi-dipole cases. The head model 
was assumed to be spherically symmetric conductor with an 
outer radius of 90 mm. 20-dB Gaussian noise was added to 
the magnetic field data in the forward calculation. 

Table I and II show minimum, maximum, exact, and 
localized values of design variables, for the single- and multi-
dipole cases, respectively. Fig. 2 and Fig. 3 show the 
convergence process of the current dipoles. From these results, 
it can be seen that the proposed method can yield very 
accurate results effectively without any prior information on 
the number of dipoles. 

CONCLUSION

In this paper, a novel multi-dipole searching technique 
using the moving dipole concept was proposed for MEG 
source localization. Since the number of dipoles needs not to 
be given a priori, the proposed method can be a very 
powerful method, compared to conventional equivalent 
current dipole methods. By applying it to single- and multi-
dipole cases, it was shown that the method could yield an 
accurate solution effectively. Further details of the results will 
be shown in the extended version of this paper. 
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TABLE I. DISIGN VARIABLES FOR SINGLE DIPOLE CASE
Units : x,y,z- [mm], r – [10-9 Am], �, � - [rad] 

Variables x y z r � �

Minimum -50.0 -50.0 -50.0 0.0 0.0 0.0 
Maximum 50.0 50.0 50.0 2.0 3.14 3.14 

Exact 12.3 49.0 39.2 1.0 1.57 1.57 
Localized 12.8 49.1 39.1 1.0 1.57 1.56 

TABLE II. DISIGN VARIABLES FOR MULTI-DIPOLE CASE
Units : x,y,z- [mm], r – [10-9 Am], �, � - [rad] 

x y z r � �

Minimum -50.0 -50.0 40.0 0.0 0.0 0.0 
Maximum 50.0 50.0 90.0 2.0 3.14 3.14 

Exact 1 -20.0 4.0 72.5 1.0 1.57 1.57 
Exact 2 20.0 4.0 72.5 1.0 1.57 1.57 

Localized 1 -19.2 3.8 73.3 1.0 1.77 1.52 
Localized 2 20.9 4.2 72.5 0.9 1.52 1.55 

(a) Iteration 1: 10 dipoles          (b) Iteration 10: 4 dipoles 

(c) Iteration 30: 1 dipole           (d) Iteration 70: 1 dipole 
Fig. 2. Convergence process of localized dipole sources : single-dipole case. 

(a) Iteration 1: 30 dipoles          (b) Iteration 25: 26 dipoles 

(c) Iteration 50: 10 dipoles         (d) Iteration 188: 2 dipoles
Fig. 3. Convergence process of localized dipole sources : multi-dipole case. 
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Abstract Magnetoencephalography (MEG) and
Magnetocardiography (MCG) provide non-invasively information about
the normal and pathological electrical activity in the human body. The 
goal of our research is the determination of the information content of
different measurement setups for MEG and MCG. Here, we compare the 
information content in magnetic vector measurements with single
component measurements. Our results indicate that both the resolution of 
multiple dipole solutions and the estimation of extended sources will
improve with magnetic vector measurements.

INTRODUCTION

Magnetoencephalography (MEG) and
Magnetocardiography (MCG) provide non-invasively
information about the normal and pathological electrical
activity in the human brain and heart, a kind of information that
is difficult to obtain by other methods. Especially the detection
of fast transient phenomena such as cortical oscillations and
spread of excitation in the human heart require these 
techniques.

Because of the extremely low magnitude of biomagnetic
signals, their feasible detection is possible only by means of
very sensitive superconducting quantum interference devices 
(SQUIDs). Commonly, multi-channel SQUID-systems detect
only one single component of the magnetic field at the
locations of the sensors. Recently, multi-channel SQUID
systems capable of measuring the three components of 
biomagnetic fields have been proposed [1-3]. But only a few 
preliminary studies about the information gain passing from
mono-dimensional to three-dimensional measurement systems
have been carried out.

The main goal of our research is the determination of the
information content of different measurement setups for MEG
and MCG. In this paper, we compare numerical simulations of
three-component and one-component cardiomagnetic fields
based on realistic patient geometries.

METHODS

The magnetic fields due to a set of current dipoles in a
realistic piecewise homogeneous and isotropic volume
conductor was computed using the boundary element method
with linear potential approximation. The model was 

constructed out of a T1 weighted MRI data set of the torso of a 
healthy volunteer. The model consisted of five compartments
(torso boundary, two lung boundaries, heart and ventricular
blood mass boundaries). A homogeneous conductivity of 0.2 
S/m, 0.04 S/m and 0.6 S/m (torso boundary, two lung
boundaries and two ventricular mass boundaries) was assumed.

We modeled the QRS interval of the human heart cycle 
with the help of 13 dipoles placed around the left ventricle 
(normal to its surface) representing the basal, medial and apical 
slice with each containing the four anatomical directions 
anterior, lateral, inferior and septal. The apex was represented 
by a separate dipole. Each dipole was fixed in direction and
strength. All computations were carried out with the software
ASA (ANT Software, Enschede, The Netherlands). 

Fig. 1 shows the simulation setup. A sensor configuration
with 64 positions was employed for the simulation of the
magnetic fields [4]. At these positions the three magnetic field
components were computed. For a configuration of 8x8 sensors
of mono-axial sensitivity, given the 13 components of the 
dipoles in the heart, one can write: 
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where  is the lead-field (kernel) matrix.),( jiL

Fig. 1. Setup of the simulations with the boundary element model, the dipolar
sources in the heart, the left ventricular blood mass, and the position of the 

magnetic field sensors (left side view).
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Composing the 3 lead field matrices of the single component
measurement systems the lead field matrix for the
configuration of three component sensors can be obtained.

RESULTS AND DISCUSSION

Figures 2-4 show the respective maps of the computed x, y
and z components of the magnetic field when only one dipole
is active (dipole strength 1 Am). Please note the different 
scaling of the magnetic fields in Fig. 2-4. Since the dipole in
this example is oriented mainly into z-direction, the sensors in
this direction (Fig. 4) exhibit the smallest magnetic field
strength.

Information content of a sensor configuration can be related
to the singular values of the lead field matrix, by means of the
singular value decomposition (SVD, [5]). The more zero or 
nearly zero singular values characterize the matrix, the less
information is contained in the corresponding sensor array.  As 
it can be noted from Fig. 5, the singular values of the lead field
matrix of the 3-D measurement system are higher than those of
any of the three 1-D systems. The condition numbers for the
lead field matrices are 1.4*105, 9.3*104, 1.9*105, and 5.3*103

(x-, y-, z-direction, and all three directions).
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Fig. 2. Computed magnetic field map (x-direction sensors, left anterior view).
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Fig. 3. Computed magnetic field map (y-direction sensors).
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Fig. 4. Computed magnetic field map (z-direction sensors).
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Fig. 5. Singular values of the lead field matrix for the case of one component
and three components measurements.

In this paper we presented numerical forward simulations
only. In conclusion, based on these simulations we believe that
the measurement of all three components of the magnetic field
will provide superior performance in the localization of
multiple and extended cardiomagnetic sources. Current
research focuses on the quantification of the expected gain with
the help of inverse computations.
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Abstract--The real head models have been reconstructed from the 
MRI head pictures, their electrical properties have been analyzed based 
on EIT using FEM. The results show that surface potential 
distributions change with the increases and reduce of conductivity 
within head, and it is the biggest when the bone conductivity are 
changed.  

INTRODUCTION 

The electrical characteristic of brain tissue is a basis for 
analyzing brain electrical and magnetic actives and clinical 
diagnosis. Information about the internal electrical 
properties of the head could have many medical uses, such 
as noninvasive monitoring of brain and blood flow, 
screening for brain cancer and epilepsy. Electrical 
impedance tomograghy (EIT) is relatively new imaging 
modality that produces images by computing electrical 
conductivity within the object [1], [2]. During the research 
and development, a number of clinical investigations have 
been undertaken and several possible applications have been 
identified in which useful physiological information may be 
obtained. But, there are many problems for head EIT at 
present. In order to map the electric properties inside the 
brain, our group constructed real head numerical models 
from MRI pictures [3], gave the complete mathematical EIT 
model, analyzed their electrical properties, and built an 16 
electrode EIT system1.

THE MATHEMATICAL MODEL FOR EIT 

The underlying relationships that govern the interaction 
of electricity and magnetism are summarized by Maxwell’s 
equations. For the case of EIT, several simplifying 
assumptions can be applied to reduce the complexity of the 
problem. Mathematically, the known quantities are the 
voltages and currents at certain points on the body, the 
unknown is the impedivity or resistivity within the body. At 
low frequencies, these quantities are related by the equation   

1This work is supported by the National Nature Science Foundation of 
China (59937160) and the Natural Science Foundation of Hebei Province 
(501037) 

0),( ���� ux ��                  (1) 
Here is appoint in � , u is the electric potential or voltage, 
and the admittivity � is given by 

),,(),(),( ������� xixx �� where � is the electric 
conductivity, � is the admittivity, and � is the angular 
frequency of the applied current.  

In practice, we apply currents to electrodes on the 
surface �� of the body. There currents produce a current 
density on the surface whose inward pointing normal 
component is denoted by j . Thus  
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The model for EIT is (1) and (2), together with the 
conservation of charge condition 

� �
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0j and  the condition � �
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0u �

which amounts to choosing a “ground” or reference voltage. 
Unfortunately, the model is a poor model for experiments 
because we do not know the current density j . In practice, 
we known only the currents that are sent down wires attached 
to discrete electrodes, which in turn are attached to the body. 
We need to account for two main effects: the discreteness of 
the electrodes, and the extra conductive material (the 
electrodes themselves) we have added. The integral of the 
current density over the electrode is equal to current that 
flows to that electrode. Thus we have  

L1,2,...,l,
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Where lI is the current sent to the lth electrode and el
denotes the part of �� that corresponds to the lth electrode. 
This is combined with  
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� in the gaps between electrodes.  (4) 
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� �      on el, l=1,2,L  (5)

Here, a number zl denotes the impedance of the layer between 
electrode and body, which we call surface impedance. Vl
denotes the imposed constraints. 

The complete model consists of (1), (2), (3), (4), and (5), 
together with the conditions  
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The numerical methods such as the finite element 
method (FEM), the boundary element method (BEM), and 
some others can solve the equations above. 

THE REAL HEAD MODEL RECONSTRUCTION AND ELECTRICAL 
PROPERTY ANALYSIS  

2D axial and sagittal real head models from MRI 
pictures have been reconstructed using image process and 
reconstruction technique, and the FEM mesh and 
equi-potential line distributions in opposite drive pattern are 
shown in Fig.1. Here, each layer conductivity from inside to 
outside are 0.33 s/m (brain)�1.0 s/m (CSF: Cerebra-spinal 
fluid)�0.0042 s/m (bone) and 0.33 s/m (scalp). 
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Fig.1. (a) 2D axis MRI head picture. (b) The head model construction. (c ) 

FEM mesh . (d) Equi-potential line in opposite drive pattern 
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Fig.2. Surface potential distribution. (a) Bone conductivity is changed. (b) 
Brain conductivity is changed. (Real line--normal, dot-and-dash 
line--reduce 50%, dotted line--increase 50%).

Different tissues have different conductivities, and the 
electrical properties vary with a physiological and 

pathological change. From Fig.2, we can see that the surface 
potential distributions vary with bone and brain conductivity 
changes, and it is the biggest that bone conductivity changes. 

THE 16 ELECTRODES EIT SYSTEM 

This system for EIT is designed, which can reconstruct 
and display approximate pictures of the electric conductivity 
inside body using the back-projection method by measuring 
the surface voltages of body, as shown in Fig.3. The data 
collection, process and imaging reconstructions are done by 
a computer. It is stable, real time, convenient and extended.

(a)                     (b) 

Fig.3. (a) 16electrodes EIT system (b) impedance imaging is reconstructed 
by computer.

CONCLUSIONS 

In this paper, many works, such as real head model 
reconstruction, their electrical property analysis, and the 
hardware build, have been done for studying the head EIT. 
The results are satisfied, which are good basis for our next 
work to study head impedance image reconstruction.
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Jacek Starzyński, Bartosz Sawicki, Robert Szmur o, Stanis aw Wincenciak,
Chair of the Theory of Electrical Engineering, Warsaw University of Technology,

ul. Koszykowa 75, 00-661 Warsaw, Poland,

e-mail: jstar@iem.pw.edu.pl

Andrzej Krawczyk, Tomasz Zyss
Institute of Electrical Engineering, Collegium Medicum, Jagiellonian University,
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Abstract— The paper presents comparison of the electric (ECT) and
magnetic (TMS) stimulation of the brain with low-frequency magnetic
field.

Numerical models used in both cases are briefly shown. ECT and
TMS finite element models use the same, realistic grid created on the
basis of NMR scans of the head. Model of the electric field is simple
(brain tissue is assumed to be a passive medium) yet exact—it was
compared with results of measurements. The model of magnetic field is
based on the �T -Ω formulation, that, by the low electric conductivity and
constant magnetic permeability of the human tissue, allows us to build
finite element model of the head only.

INTRODUCTION

The transcranial magnetic stimulation (TMS) has been
thought as a tool in psychiatric treatment, especially in treating
endogenous deep depression. TMS is expected to replace (at
least to some extent) the electro-convulsive treatment (ECT).
The key-point in the stimulation process is to ensure that
the effect of the eddy currents evoked in the brain will meet
therapeutical expectations. Thus, it is necessary to design such
a TMS system, which will be able to evoke eddy currents
similar to those during ECT.

To avoid human experiments, which are troublesome from
various points of view, the attempts have been made to employ
the numerical modelling in order to evaluate the current that
flows throughout the brain tissues and to predict the system
parameters. The effective calculation of the field in the region
of interest (cerebral cortex of the human head) is the crucial
point of simulation.

MODEL OF THE HEAD USED FOR SIMULATIONS

The previous works the authors have shown that the
reliable computer simulation should use a very exact model
of human head [1, 2]. Use of �T -Ω formulation presented at
Compumag in Evian [3] allows us to restrict the model of the
magnetic field to the head only and thus both ECT and TMS
can be simulated with the same accuracy.

FIELD CALCULATION

Nature of therapeutic effect of the electromagnetic brain
stimulation is quite complicated. Current flowing through the
tissue stimulates neurons up to the artificially generated self-
sustaining after-discharge (SSAD) – convulsive attack which
is believed to be necessary for therapy of depression.

Fig. 1. The ideas of ECT (left) versus TMS (right): in ECT two metallic
electrodes are placed on the skin and head is subjected to voltage pulses up
to several hundreds volts; in TMS a coil operating in pulse mode is placed
close to the head.

In present simulations we do not model the SSAD, but
we would like to calculate the current distribution in the
head (especially in the brain tissue) just before the convulsive
attack. Therefore we consider brain as a “passive” medium,
characterized only by its electrical parameters: magnetic per-
meability µ0, electric permeability ε ≈ 1000ε0 and electric
conductivity γ that does not exceed 1 S/m [4].

The signals used in stimulation of human brain in both
cases, ECT and TMS are not sinusoidal. Harmonic analysis
shows that the pulse signal has spectrum in extremely low
frequency field (ELF)–up to 20 kHz. Because the material
coefficients of the tissue are linear (for low frequencies) and
because the skin effect is very weak, we can use Fourier
expansion of the stimulus and solve several time-harmonic
field problems. This saves a lot of computation time. Further
we write all equations for complex fields.

Electric field

Mathematical model of flowing current electric field is
well known, simple Laplace equation:

∇ · (γ + jωε)∇V = 0 (1)

Dirichlet boundary conditions are set on electrodes and
natural Neumann condition on the rest of external surface.
Numerical stability of Laplace equation is high, so results can
be obtained fast even for such complicated model.
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Due to extremely low frequency and low electric perme-
ability ε, displacement current can be ignored and current
density distribution can be expressed as

−γ∇V = �J (2)

Magnetic field

To avoid adding extra FE grid in the space surrounding
head and coil and due to difficulties with establishing bound-
ary condition we prefer �T -Ω formulation over description with
magnetic vector potential �A. Creation of �T -Ω based model
allow us to cover with FE mesh only the head.

We assume that magnetic permeability of the tissue is
constant, so considering magnetic field in the head placed in
an external magnetic field �Hs we can write:

�H = �Hs + �T −∇Ω, (3)

where �T and ∇Ω represent field induced in the tissue.
Using Maxwell equations for harmonic fields in homoge-

nous, diamagnetic material and definition �J = ∇× �T , we can
form partial differential equation for �T . To get unambiguous
result and improved conditioning of global algebraic equations
system (FEM) we use Coulomb gauging [6, 5]. The final
equation is:

∇× 1
γ
∇× �T −∇(

1
γ
∇ · �T ) + jωµ0

�T = −jωµ0
�Hs. (4)

Coulomb gauging assure that divergence of vector �T is equal
zero.

On external surface of conducting area (skin) there are
only tangential components of eddy currents. This means that
vector �T has only normal component, �T×�n = 0. On boundary
between the low conducting area and air we need to assure:

Jn = 0, and ∇ · �T = 0, (5)

where Jn is normal component of the current density.
Algorithm of calculations for �T -Ω and boundary condi-

tions used on the head surface have been discussed in authors’
previous works [3].

COMPARISON OF ECT AND TMS

Experiments presented here were aimed on design of the
coil which can excite eddy currents of similar density to those
during ECT.

The results of calculation of the eddy currents evoked in
the human head by coil placed near to the right temple (TMS)
and current distribution from electrodes (ECT), as shown on
Fig. 1, are shown on Fig. 2. In both cases the head horizontal
cross-sections are presented.

Currents induced in brain by magnetic field are much
stronger than one forced by voltage connected to the elec-
trodes. Additionally TMS allows one to focus stimulation to
desired region of the brain, so therapy can be more precise
and side effects reduced.

Detailed analysis of results will be included in full, four
page paper.

a)

b)

Fig. 2. Eddy currents density evoked by a) ECT and b) TMS

CONCLUSION

The numerical simulations allow us to calculate eddy
currents induced in human brain during ECT and TMS. To the
authors’ knowledge it is not possible to verify local values of
current density, but ECT model was verified by comparison
of global quantities (as total electrode current). The TMS
model was validated by calculations of eddy currents evoked
in object of simple shape placed in homogeneous field [3].

Basing on results of simulations we believe that TMS can
replace ECT for treating deep depression. The TMS should
allow even better, more precise stimulation.
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Abstract - In biomagnetic inverse problem, it is important
to select optimal method, especially in the case of estimating
internal  electrical  sources for higher functions with poor
information about their source profile. In this study, internal
sources of brain magnetic fields associated with short-term
memory processes were estimated by (1) nonlinear parameter
optimization method using multi dipole model, and (2) linear
optimization method using L1 minimum norm estimation (L1-
MNE) technique.  Both methods showed internal sources in the
inferior part of the occipital lobe, the supramarginal gyrus and
the angular gyrus, and the inferior frontal gyrus. This result
indicate the reliability and availability of these methods for
brain magnetic data associated with higher brain function.

INTRODUCTION

The measurement of brain magnetic fields outside of
the head (MEG: magnetoencephalography) is effective for
imaging of the brain functions in human subjects since it is a
completely non-invasive technique, which detects direct neural
activity in the brain with temporal resolutions better than 1 ms.
The ill-posedness of MEG inverse problem, estimation of  the
internal electrical source distribution in the human brain from
surface measurements of MEG, requires some simple modelings
of the neural current profile, e.g., a small number of equivalent
current dipoles (ECDs), which assume few localized current
sources [1].  Single ECD model has been used to estimate the
source locations of magnetic fields with relatively simple
patterns, such as evoked fields generated from the primary
auditory or somatosensory cortex [1].  However, source
estimation using a small number of ECD model  is problematic
when the source current distribution is not localized, when
many brain regions are activated simultaneously, or when  a
priori knowledge about generator profile is poor.

Many methods have been proposed to overcome this
difficulty.  Imada et al. [2, 3] and Nakagawa et al.[4] proposed a
nonlinear parameter optimization method using multi-dipole
model.  Matsuura et al. [5] and Uutela et al. [6] proposed one of
linear optimization methods, L1-minimum norm estimation (L1-
MNE) technique.  In this study, internal electrical sources
associated with short-term memory processes were estimated
by these entirely different two methods, (1) nonlinear parameter
optimization method using multi dipole model and (2) linear
optimization method using L1-MNE technique, in order to
evaluate their reliability and availability with measured magnetic
data associated with higher brain function with poor a priori
information.

METHODS

Source Analysis
(1) Nonlinear parameter optimization method using multi dipole
model [2-4]:  The localization of ECDs was based on the spherical
conductor model, which takes into account the volume current

within the sphere.  The radius and the center of the sphere were
determined by fitting a sphere onto the surface points of the
cortex.  We determined the active brain areas by first localizing
single ECDs in various local regions of a spherical head model
using simplex-method [1].  Among the calculated ECDs, those
having a goodness-of-fit > 80% and with a 95%-confidence
volume < 268 mm3 [4] (corresponding to the volume of a 4 mm
radius sphere), were selected.
(2) Linear optimization method using L1-MNE technique [5, 6]:
The calculation was based on real-head-shape model obtained
from magnetic resonance images (MRIs) of each subject. About
10,000  dipoles were set at each grid position in the head model.
Sources were explained with the smallest sum of absolute dipole
amplitudes (minimum L1-norm).

For both methods, the source location was registered in
each subject's MRIs.

MEG Recordings
Recordings of event-related magnetic fields were carried

out in a magnetically shielded room using a 122-channel whole-
head neuromagnetometer (Neuromag-122TM; Neuromag Ltd.,
Finland).  The visual stimuli were delivered from a LCD projector,
located outside the shielded room, through an optical fiber bundle.
The vertical electrooculogram (EOG) was recorded with subjects'
infra- and supraorbital electrodes to monitor artifacts from eye
blinks and eye movements.  The magnetic data were sampled at
0.5 kHz after band-pass-filtered between 0.03 Hz and 100 Hz.
Any epoch coinciding with magnetic signals exceeding 3,000 fT/
cm and/or a vertical EOG deflections beyond 150 µV were rejected
from further analysis.  The average of more than 100 correct trials
were digitally low-pass-filtered at 40 Hz.  The average of 0.2 s pre-
Sample period served as the baseline.

Tasks, Stimuli, and Subjects
Fig. 1 shows a schematic illustration of a stimulus

sequence, in a delayed paired comparison task.  Each trial

Fig. 1.   Schematic illustration of a stimulus sequence.
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consisted of a pair of circles with different colors (blue, red,
green, and orange) in each quadrant.  The first stimulus (Sample)
was presented for 50 ms.  After a constant period of 3.0 s, the
second stimulus (Test) was presented for 100 ms.  The subject
was instructed to react immediately after the third stimulus
(Mark), which was presented 1.5 s after the Test. Two
experiments were performed with separate conditions; a memory
condition and a control condition.  In the memory condition,
subjects were requested to move the index finger when the
Test was identical to the Sample, and the middle finger when it
was different.  In the control condition, the subjects were
instructed to ignore the Sample, and to alternately move the
index or middle finger immediately after the Mark.  Seven healthy
Japanese volunteers (5 males and 2 females, 23-33 years old, all
right-handed) took part in this experiment.

RESULTS

Extremely low frequency components of brain magnetic
fields were observed in the temporal and/or occipital areas of all
subjects for a period beginning 500 ms after the Sample onset in
the memory condition.  They sustained during retention period
(between Sample and Test). In contrast, these components were
not seen in the control condition.  Sources for the low frequency
components were localized in the latency between 500 and 2500
ms.  Table I shows source locations of all subjects for the both
multi-dipole and L1-MNE methods.  In the both methods,
sources were primarily localized in the vicinity of the fusiform
gyrus (seven out of seven subjects in the left and/or right
hemispheres),  the lingual gyrus (six subjects), near the
supramarginal gyrus/the angular gyrus (seven subjects), the
inferior frontal gyrus (five subjects), and the posterior part of
the cingulate gyrus (four subjects).

DISCUSSION

Sustained signals during retention period of short-term
memory tasks were also observed in electroencephalographic
recordings [7, 8].  Sources for the low frequency components
were localized in the inferior part of the occipital lobe, in the
vicinity of the supramarginal gyrus and the angular gyrus, and

the inferior frontal gyrus.  The occipital lobe widely participates
in visual information processing.  The activities of the angular
gyrus were reported in visual pattern recognition and short-term
memory [9].   It  is reasonable brain regions which employ visual
processing play a roll as visual-memory storage.  Therefore, we
considered these extremely low frequency components reflected
the storage processes of the visual short-term memory.

The both nonlinear parameter optimization method using
multi dipole model and linear optimization method using L1-
MNE technique showed almost same source locations.  This
results  indicate reliability and availability of these method when
they are applied to magnetic data associated with higher brain
function with poor information about their source profile.
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Fig. 2  Magnetic wave forms, in the channels which
show the extremely low frequency components
during the memory condition (subject S1).  Vertical
lines denote the Sample and the Test onset.

TABLE I.  Source locations for the extremely low frequency components, estimated by multi-
dipole method (white circle) and L1-MNE technique (black circle). Double-circles denote
sustained sources more than 300 ms.
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75Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Manuscript received by November 15, 2002. This work was supported by the 
National Science Council under contract:  NSC 91-2213-E-214-022-

Abstract- Finite element analysis is used to compute the 
current distribution of  the human cochlea during 
cochlear implant e lectrical  s timulation.  Genetic  
algori thms are  then appl ied in conjunction wi th 
computational neuroscience model and the finite element
analysis to optimize the shape and dimensions of cochlear 
implant electrode array.  The goal is to improve the focus 
of electrical energy delivered to the auditory nerves in the 
human cochlea,  thus,  reducing energy wasted and 
improve the efficiency and effectiveness of the cochlear
implant  system.

Keywords:Electrical stimulation, activating function, cochlear 
implant electrode, genetic algorithm, cochlear neuron, volume
conduction analysis.

I. INTRODUCTION

While cochlear implant (CI) has been widely used 
clinically to restore some hearing to hearing impaired 
patients, the functioning of cochlear implant is not well 
understood, i.e. variation in performance for different person. 
Typically, the functioning of the cochlear implant can be 
divided into: (1) the electrode array delivers electric current
through the cochlea and (2) the generation of the auditory 
neural response. Due to the miniature size of the human 
cochlea, accurate experimental result is very difficult to 
obtain.  An alternative approach is to study this using the 
computational approach. Computational modeling allows 
studies of electrical stimulations for the human cochlea 
without the measurement error so frequent in experimental 
sciences-the measurement interfering with the experiments.
Until recently all the computation studies focus more on the 
potential distribution in the cochlea model [1] and did not 
cover the electrode design and its performance. Most studies 
assume point electrodes or ball electrodes as the source of 
stimulations, while the available electrode designs include 
the ball electrodes, banded electrodes, half banded electrodes, 
and planar electrodes [3].

In this paper, planar electrodes will be studied in terms of 
their potential distribution and neural response [1, 3] for a 
half turn human cochlea model using coupling genetic 
algorithm [2], finite element analysis, and activating function.

II. METHOD

A finite element model of the first half turn of a spiraling 
human cochlea used in this paper is shown in Fig. 1. This 3D 
cochlea model was created by extruding the 2D cochlea 
cross section (Figure 2) into 3D around the axis of the 
modiolus. The model consists of perilymph, spiral ganglion, 
endolymph, Reissner's membrane, basilar membrane, stria 
vascularis, and organ of corti. The material resistivities are 
taken from [1].  Volume conduction analysis using finite 
element method is applied to determine the potential 
distribution of electrical stimulated cochlea.  The response of 
the cochlea neurons is determined by the activating function. 
Activating function [1, 3] is used to obtained an impression 
of the excitation pattern of the electrical stimulation.
Activating function can be computed from the nerve fiber 
nodes given in Fig. 2.

The complete model (Fig. 1) is embedded into a cylinder 
of bone. In order to maintain an optimal shape and size for 
the 3D finite elements, it is determined that the thickness of 
the basilar membrane, Reissner's membrane, and the stria 
vascularis and their resistivities will be adjusted.

Planar electrodes, will be tested to compute their neural 
excitation profile for monopolar and bipolar stimulating
modes. Results will show comparison of the potential 
distribution and activating function contour along the nerve 
fiber and the basilar membrane for the planar electrode
configurations with monopolar and bipolar stimulating
modes.

Fig. 1. A model of the first half turn of a spiraling human cochlea
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A typical CI planar electrode array is shown embedded in 
the cochlea model in Figure 2. Notice the spiral ganglion 
cells (n5 to n12) is located near the electrode pair. Electric 
conduction analysis is performed using finite element 
analysis.  The activating function computed using values 
from n3 to n12 are defined as the objective function in the 
genetic algorithm. Fig. 3 shows the activating function
contour of an planar electrode electrically excited cochlea 
model.

The CI electrodes are shaped by its boundary nodes. The 
coordinates of the boundary nodes are represented by binary 
codes. GA can then be used to search the binary codes which 
represent the coordinates of the boundary nodes (and shape 
of the electrodes) for optimum values in terms of the 
objective function.

The electrode shape and dimensions will be given certain
constrained to reduce the search space.  Figure 4 shows the 
flowchart of how the electromagnetic analysis and 
neuroscience model are coupled with the genetic algorithm. 
Preliminary results show that GA-FEM-AF model can be 
applied to optimize electrode shape and dimensions.
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Fig. 2. A 2D cross section of a cochlea model. n3 to n12 are nerve fiber 
nodes used for computation of the activating function contour in Fig. 3. 

 Figure 3 The activating function contour of a electrically stimulated cochlea 
with a planar electrode array.

Figure 4  Flowchart of genetic algorithm coupled with electromagnetic 
analysis based on finite element method and neuroscience model.
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Abstract – This paper investigates the possibility of using large-domain 
approach to electrical impedance tomography (EIT). EIT has attracted 
considerable attention as a possible low-cost imaging method. However, 
most approaches used in the EIT image reconstruction are based on the 
subdomain method. For two- and three-dimensional problems, the 
number of unknowns involved in the subdomain methods can be 
prohibitively large. Large-domain approach to EIT may decrease the 
number of unknowns and thus improve computational efficiency. 

I. BACKGROUND

In electrical impedance tomography (EIT), imaging of an 
object is based on the estimation of its interior electrical 
properties by using the measurement data obtained at its 
surface [1]. The currents are injected through surface 
electrodes, the impedance distribution within the object 
determines their distribution, and the resulting surface 
electrode voltages are measured. The backbone of the EIT 
methodology is the reconstruction algorithm which uses the 
knowledge of the applied currents and the measured voltages 
to compute the electrical properties (conductivity and 
permittivity) in the object [4]. The challenge of the EIT is to 
employ optimal current patterns and reconstruction algorithm 
to overcome the difficulty of relatively large impedance 
profile changes being reflected in small changes in the 
measured surface voltages [5].  

In geological applications [2], this technique is often 
referred to as electrical resistance tomography (ERT), since 
only the resistive component of the impedance is determined. 
In medicine and biology, EIT has been used as a non-ionizing 
modality for imaging of the human body, providing the 
possibility of continuous low-cost patient monitoring [1,3]. 

II. MOTIVATION AND METHODS

 Reconstructions algorithms (comprised of a forward 
solver and an error-minimization procedure) developed for 
the EIT to date are based on the subdomain methods. The 
object of interested is meshed into small voxels. In the 
reconstruction process, the electrical parameters within each 
voxel are considered constant. This approach often results in 
a large number of unknowns. 

This work explores the possibility of using the large-
domain approach [6] to EIT, with the aim of reducing the 

number of unknowns. The initial analysis is performed in 
several steps: 
- Step 1: Development of basic theorems which confirm that 
the process can, in principle, lead to useful results; 
- Step 2: Introduction of basic concepts and procedures for 
large-domain EIT; 
- Step 3: Development of a one-dimensional (1-D) large-
domain EIT algorithm for numerical analysis of possibilities 
and limitations. 

If steps 1-3 imply method’s feasibility, further extension 
to two-dimensional structures will follow.  

III. BASIC THEOREMS

In essence, EIT is based on three basic theorems, the 
proof of which is omitted in this paper for conciseness. Their 
key implications on the validity of the EIT method are as 
follows:
T1. Theorem on the influence of material dielectric properties 
in dc and low-frequency (l.f.) current fields on current 
distribution: for dc or l.f. currents, the influence of the 
dielectric properties of materials under investigation on the 
EIT procedure can be neglected.   
T2. Theorem on uniqueness of dc currents in an 
inhomogeneous conducting body excited by sources over its 
surface: if the potential at all points of a closed surface 
bounding a dc or l.f. current field is known, then the potential 
is uniquely determined at all points inside the surface. 
T3. Theorem on uniqueness of conductivity in an 
inhomogeneous conducting body determined from values of 
potential on the body surface: the relative value of 
conductivity (resistivity) in an inhomogeneous conducting 
body determined from the values of potential on the body 
surface is unique.   

Large-domain approach will be adopted for the 
subsequent 2-D and 3-D studies and we briefly outline its 
basic concepts. In the large-domain approach, the key step is 
to represent the geometrical domain of interest by means of 
the least possible number of smaller domains. Trilinear 
hexahedrons have shown to be an advantageous choice for 
the domain shape, with hexahedron facets being in the form 
of bilinear quadrilaterals defined uniquely by their four 
vertices [6]. The three generalized coordinates running along 
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three hexahedron edges meeting at the same node are used to 
define any quantity inside the hexahedron. 

IV. 1-D CASE STUDY – THEORY

In the 1-D study, the current density vector remains the 
same at all points along the x-axis. For the resistivity (x) and
electric field and Ex(x) along the axis,  

( x )J E ( x )x xρ = ,   (1) 
Jx can have any value. For simplicity Jx = 1 A/m2 is 
adopted. In this case, Eq. (1) becomes 

dV( x )( x ) E ( x )x dx
ρ = = − ,  (for Jx = 1 A/m2 )         (2) 

which completes the solution in the 1-D case. Since V(x) is
usually given in table form, its derivative needs to be 
determined numerically. 

The described simple solution has the following specific 
value in this study. It enables the inverse procedure, i.e. with 
adopted values of (x), the exact solution given by Eq. (2) 
yields values V(x). These values can be used to validate the 
results of numerical experiments. 

Note that the measured (or simulated measured) potential 
at a point x can be expressed in terms of the electric field 
strength along the wire as  

0
x

E ( x )dx V( x )x− =   .                              (3) 

If the (unknown) Ex(x) is represented in the form of a series, 
for example, as a polynomial with unknown coefficients  

0 1e ,k , ,...,mk = :

0

m
kE ( x ) e xx k

k
=

=
,                               (4) 

then, substituting Eq.(4) in Eq.(3) results in  
1

1
0

m kxe V( x )k k
k

+
=

+
=

 .                             (5) 

There are several methods for solving Eq. (5) 
approximately.  All of these methods must transform Eq.(5) 
into a system of m linear equations. The two methods 
considered in this study were the point-matching method and 
the method of moments. In addition, results are obtained with 
the subdomain method for comparison. 

V. 1-D CASE STUDY – RESULTS AND CONCLUSIONS

As a numerical example, let us consider a 1-m wire with 
the origin 0x = at one wire end and the x-axis directed 
towards the other end. For comparison with numerical results, 
the following exact wire resistivity is assumed: 

( ) 1 cos(10 )x xρ = +  .                             (6) 
The potential distribution along the wire, with the reference 
point adopted at 0x =  , is 

sin(10 )( )
10

xV x x= − − ,   (for Jx = 1 A/m2 ) .           (7) 

For the simulated measured data, the potential is calculated at 
adopted number nm of “measuring points”. Random noise 
(1%) is added to these values to simulate measurements 
errors. Three solution methods are used for comparison: 
point-matching, method of moments and subdomain.  

Numerical results can be summarized in several points: 
1. The most accurate method was the point-matching method. 
2. Method of moments is extremely sensitive to accuracy of 
integration and is unstable.
3. For comparable accuracies, In 1-D case, subdomain 
method requires a number of unknowns that is an order of 
magnitude larger than that needed by the point-matching 
method. This contrast is expected to increase with progress to 
2-D and 3-D examples.  

Figure 1 plots (x) computed at 20 equidistant points by 
point-matching (with 10n = degrees of approximation) and 
the subdomain medhod (with 500ns = subsegments). The 
exact solution is also plotted for comparison. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 1. (x) : Exact solution and the numerical result computed at 20 
equidistant points by point-matching ( 10n = degrees of approximation) and 
the subdomain medhod (with 500ns = subsegments).  
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Abstract � Magnetic induction tomography of biological tissue is used 
for reconstructing the complex conductivity distribution j� � ��� � in 
a human body by measuring the perturbation �B of an alternating 
magnetic field 0B . The aim is to simulate the occurring eddy currents in 
biomedical applications by the finite element method. 

INTRODUCTION

Since magnetic induction tomography (MIT) is a non-
invasive and contact-less imaging method it is especially 
attractive for biomedical applications, for instance, brain 
edema monitoring. MIT tries to reconstruct the conductivity 
distribution j� � ��� � in a target object. A sinusoidal time 
varying magnetic field 0B generated by  excitation coils 
penetrates the conducting object. Eddy currents are induced 
perturbing the primary field 0B . The corresponding voltages 

0V and V� induced in receiver coils are exploited for the 
image reconstruction. To solve the eddy current problem, a 
finite element (FE) program has been implemented capable of 
considering arbitrary complex geometries such as anatomical 
structures in the human body. Simulated and measured data 
are compared of a simple but representative experiment with 
weakly conducting materials and low contrast. 

POTENTIAL FORMULATION AND FINITE  ELEMENTS 

A time harmonic eddy current problem excited by coils 
have to be simulated, see Fig. 1. This means that in the non-
conducting region n� a stationary magnetic field is assumed, 
whereas in the conducting region c�  eddy currents are 
considered. The complex formalism can be exploited 
advantageously. The formulation ,V �r rA A has been 
implement which employs a reduced magnetic vector 
potential rA valid in the entire problem region c n� � � ��

and a modified electric scalar potential V  applied in the 
conducting region c� only [1]. The magnetic flux density B
is split into a field sB caused by the sources, i.e., the 

Js
Ar

0

0�

� �

�

�

Non-conducting region �n:

0

0
1r

�

�

� �

�

�

�

Eddy current region �c:

Ar, V

�c: Bn=0

�cn:  Hcxn=Hnxn
 Bcn=Bnn

Fig. 1.  Eddy current problem excited by coils.

excitation coils, and mB due to the presence of the material to 
introduce the reduced magnetic vector potential nrA  in n� :

0 ncurl�� � � �s m s rB B B H A . (1) 

The magnetic field intensity sH in (1) is the Biot-Savart field 
of the coils satisfying 

curl�0 sJ H , (2) 

where 0J is the current density in the coils. Exploiting (2) 
avoids modeling the coil volume by FEs. Inserting of (1) and 
(2) in Ampère’s law yields 

� � 0ncurl curl curl curl� ��� �r s sA H H . (3) 

Similarly to n� , the magnetic flux density B in c� is split 
into two parts 

ccurl curl� �s rB A A . (5) 

The vector potential sA describes 0� sH . This assumption 
allows to represent the electric field intensity E

� �cj gradV�� � � �s rE A A (6)

taking into account Faraday’s law and introducing a modified 
electric scalar potential V . Next, the electric field intensity 
E  in (6) together with Ampère’s law results in  

� � � �c ccurl curl j gradV� ��� � �r rA A
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� �0j curl�� ��� � �s sA H (7)

wherein  the complex conductivity 

j� � ��� � (8)

has been introduced. 
The missing equation for V is obtained by the aid of the fact 
that the current density J  is divergence free that yields 

� �� � � �cdiv j gradV div j�� ��� � �r sA A . (9) 

The corresponding boundary value problem is solved by the 
FE Galerkin technique using the tetrahedral FEs of second 
order [2]. The arrangement of the nodes and edges as well as 
the associated shape functions of the tetrahedral FEs are 
geometrically symmetric and the shape functions are invariant 
for permutations of the barycentric coordinates. The use of 
tetrahedral elements facilitates also modeling of complex 
geometries, for instance, a human head with brain. The vector 
potential rA is approximated by edge basis functions iN and 
the scalar potential V is represented by nodal basis functions 

iN . The nodal FE of second order is shown in Fig. 2 on the 
left side. It consists of 14 nodes with midpoints of the nodes 
at the edges and facets. The shape functions iN satisfy the 
orthogonal condition i ijN �� at node j. The edge FE consists 
of 24  degrees of freedom. For the sake of clarity only the 
edges of one facet are shown in Fig. 2 on the right side. The 
edge shape functions iN satisfy the integral orthogonal 

condition ij�� �� i jN ds  along edge j. 
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Fig. 2.  Symmetric tetrahedral nodal (left side) and edge (right side) finite 
element of second order (only edges and nodes of one facet are represented). 

NUMERICAL SIMULATIONS

The simple but representative setup depicted in Fig. 3. 
consists of a cylindrical saline tank (the diameter and height 
are 160mm ) supplemented by an extension tunnel [3]. An 
agar sphere (with a diameter of 56mm ) is moved from the 
center of the tank along the x-axis as drafted. The specific 
electric conductivity of agar is 8 /S m� � and that of saline 
is 4 /S m� � which means that the conductivities as well as 

the contrast are very small. The relative permittivity of agar 
as well as of saline is 80r� � . The excitation frequency has 
been chosen to be 700f kHz� .

18

z-axis

200 160

saline tank        extension tunnel

agar sphere

95

18

excitation coil, 
solenoid

z-axis

200 x-axis160

plastic guide for the sphere
agar sphere

direction of  
displacement 

quadratic receiver coil, 
edge length=60 

Fig. 3.  Setup of the experiment with dimensions in mm. 

The measured imaginary part of the sensitivity  

0

0

U U
S

U
�

� (16)

has been compared with the simulated one. The voltages U
and 0U induced in the receiver coil refer to the perturbed and 
unperturbed case, respectively. The results compared in Fig. 4 
are within the measurement accuracy and, thus, very 
satisfactory. The good agreement of the simulated data with 
the measured ones demonstrates the applicability of the 
implemented FE program for objects with low conductivities.  
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Fig. 4: Sensitivity of the agar sphere in the sodium tank.
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Abstract--The reliability of resistors in the modern hybrid Integrated
Circuit (IC) production becomes more and more important. This paper
discusses a method to evaluate post-trim drift behavior of laser trimmed
thin film resistors. Based on numerical flux field computations a dynamic
post-trim drift model is deduced and it will be shown how the Boundary
Element Method (BEM) is used to simulate such processes (see also [1]).

INTRODUCTION

High precision resistors are responsible for functionality,
capability and reliability of modern hybrid ICs. In practice high
precision resistors are difficult to manufacture. In difference to
monolithic diffusion resistors planar thin film resistors on silicon
wafers are trimable and that’s why they are frequently applied to
meet precise resistance specifications. Furthermore, film resistors
on silicon wafers are mainly used to compensate various
manufacture process variations of other circuit components.
Today, such singular resistance adjustments are performed by
laser trimmings on wafer level. This has become the most popular
method of individually tailoring each die on a silicon wafer to
meet precise resistor specifications. The used lasers operate in
pulsed mode due to energy reasons. When the laser beam travels
rapidly across the resistor being trimmed each pulse vaporizes a
small spot of film material and the individual pulses overlap
creating a close, and clean cut line into the resistor. These shape
changes always increase their resistance, pulse by pulse -
dependent on the concrete trim path figure. 

The laser process itself has an impact on the long term
stability of each trimmed resistor. This disadvantage is caused by
thermal and mechanical shock each laser pulse induces into
material next to any trim kerf edge. The region is called Heat
Affected Zone (HAZ) and it shows altered, unstable properties.
This effect cannot be avoided completely. Relaxation processes in
that zone are responsible for the additional resistance drift of
trimmed resistors. Thus, it is essential to know for resistor layout
processes how trimmed resistors behave, if there is a premium on
high accuracy and stability. Because of the high costs involved in
the trim process, there is the desire to evaluate trim and post-trim
drift resistance changes, rather by carrying out of simulations than
by real world experiments. Thus, the following sections introduce
an approach to model such effects numerically, whereby the main
focus here is on drift issues. For trim simulation usage in resistor
shape and for trim path layout processes see [2].

RESISTANCE COMPUTATION AND METHOD SELECTION (BEM)

The resistance of a film resistor is determined by its geometry
and by the electrical property of the used film material. The effect
of laser trimmings stems from changing the geometry by

vaporizing the film partially, as mentioned above, which
increases its resistance. For the pure ohmic resistance a stationary
current flux field through the domain

�
is to consider. The

resulting stationary potential field � has to satisfy the Laplacian
partial differential equation under the assumption that the used
material within the domain is a homogeneous, linear, and
isotropic one. To excite a stationary flux field within the resistor
a constant potential difference between the two terminals is
necessary. In the examples of Fig.1 the terminals are at the
vertical sides of the resistor. Because the objective for film
resistors is to produce a constant sheet thickness z and having all
over the same conductivity � , the whole problem is treatable as a
2-dimensional one. Thus, the domain has exact two different
Dirichlet boundaries, �  and �  - distinct from each other - and all1 3

other edges are homogeneous Neumann ones.
Ohm's law says that the resistance is the quotient of voltage by

total current through the structure. The voltage is given by the
used potential difference of the Dirichlet edges and the structur's
total current can be obtained by integration of the normal current
density n � �  along one Dirichlet boundary multiplied by �  and z.
All together it gives for the film resistance R:

where n is the outward unit normal.
For almost all outlines used here, Laplacian equation is not

solvable analytically. But several numerical methods are
applicable for this, like Finite Element Method (FEM) or
Boundary Element Method (BEM). The BEM, however, proves
to be beneficial for this application. First of all, the problem here
is a homogeneous and linear one, where no volume discretization
is necessary and so it is dedicated for the BEM. Hence, the mesh
generation is a one-dimensional problem only. Refinement issues
can remain in user's responsibility because insufficient results
become pretty soon obvious during the simulation process.
Therefore adaptional refinement cycles can be avoided and thus,
preset and equidistant elements are useable. Second of all, values
of the directed derivatives needed by the integration in (1) are
already present in the collocation points and no further effort is
necessary for that. This simplifies and speeds up the integration
procedure. Third of all, the BEM minimizes the residuum on the
boundary by design. This is not the case by the FEM. Hence, the
BEM provides more consistent results than the FEM.
Furthermore, the BEM shows a better treatment of boundary
singularities than the FEM. All this leads to significant time
savings for computation (together up to a factor of 5). In addition,
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Fig. 1 Power density distribution of a centric P-cut (left) and an excentric
P-cut (right)

(2)

Fig. 2 Dynamic post-trim drift behavior of different trimmed bar resistors 
1: excentric P-cut; 2: centric P-cut; 3: PPP-cut; 4: L-cut; [t]= h

BEM's memory usage is smaller than for FEM in the same case
and for similar results (relation often about 2:3). The same is to
say about the program code complexity (relation is greater than
1:6 for number of source code lines). [1], [2] 

POWER DENSITY DISTRIBUTION

Sheet power density distribution is one of the driving factors for
layout sizing during resistor design. Minimizing of resistor real
estate usage is a prime priority there. On the other hand, the
power distribution within the domain rules most of the aging and
drift effects, as well as those in the HAZ. An interpretation of the
global, average power conversion is not qualified to describe
them. The local power density can be calculated by

� (x,y) = z � ( � � (x,y))  on
�

\ � .2

By using first derivatives of the fundamental solutions in the
formula for interior points of the BEM the gradient can be
calculated with a high resolution. This results in smooth and
reliable power distribution maps (Fig. 1). Again, an important
benefit of the BEM for the following modeling where the power
density distribution in the HAZ will be explored.

POST-TRIM DRIFT MODEL

The laser trim process is changing the resistor geometry by a trim
strategy which always leaves an unstable zone next to each cut
path. The material being vaporized very quickly provokes a short,
intense pressure blast what compresses the remaining rim zone
material along the cut pathway mechanically. Since the intensity
within the beam is approximately Gaussian distributed the laser
energy at rim zone locations is not high enough for vaporizing of
film material. It will be thermally stressed anyhow. The material
within that zone gets cracked and anneals amorphous and chaotic.
It will have other electrical characteristics than the film material
somewhere else within the domain. But it is still a part of the
electrical current path. The HAZ conductivity is usually unknown,
as well as its geometrical size. The amorphous, chaotic zone
character destabilizes the resistor in use because of a lot of
microscopic sharp reenty corners. At these locations the power
density can be extreme, if a current flow is present. That means
there will be an intense electrical energy conversion into heat
what will release the "frozen" mechanical strains in that region
and round down reentry corners. The electrical zone property will
alter again and a post-trim drift of resistance occurs. The whole
HAZ becomes more and more relaxed and the drift process
continues to slow down with time.

In practice it can be observed that the temperature accelerates
the drift, but it has no influence on final post-trim drift amount.

The drift height is to gain by one exemplary experiment.
Furthermore, it can be shown that other conductivities at border
lines can be modelled by local domain scaling. Using the
geometrical equivalence in dependence on local zone temperature
delivers a method to model this dynamical behavior by BEM.
Therefore each node i of trim kerfs boundary gets a close, interior
sample point assignment where the local power density �  will bei

taken from. Discrete integration over time under respect of an
energy loss gives the energy density Q at this position, which isi

an equivalent expression of local temperature. The higher the
temperature Q the faster the node i will move accordingly.i

Hence, a node moving function m is to define as modeli

hypothesis:

where m is the maximum move range; t the discrete time; � a� j

HAZ material constant; and Q an external energy density.T

Iteration of (2) changes domain geometry 
�

(t ) for each time stepj

and it produces a view graph of post-trim drift over time by
resistance computation for each t , see Fig. 2. j

CONCLUSIONS

The usefullness of the BEM as a fast, precise and robust method
is shown for the computation of film resistor's post-trim drift
behavior. It is also shown that other well known methods, like
FEM, are less suitable to model the phenomenon of post-trim
drift. Resistor precision requirements in IC production increase
permanently, and so also the necessity to choose proper trim
pathways. These computations deliver additional, fundamental
selection criterions for designers and hereby are of future
importance.

REFERENCES

[1] A. Kost, Numerische Methoden in der Berechnung elektromagnetischer
Felder, Springer Verlag, Berlin, 1994.

[2] K. Schimmanz, Konzipieren und Bewerten von Hochpräzisions-
Hybridwiderständen durch Laser-Trimm-Simulation, Dr.-Ing. thesis, TU
Berlin, 2002.

83Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



An Efficient Algorithm for Cutting Multiply Connected Regions 

J. Simkin, S. C. Taylor, E. X. Xu 
Vector Fields Ltd., 24 Bankside, Kidlington, Oxford, OX5 1JE, UK. 
js@vectorfields.co.uk sct@vectorfields.co.uk ex@vectorfields.co.uk

Abstract –This paper presents a method for checking the connectivity 
of a set of finite elements and for dividing the set into simply connected 
sub-sets. The algorithm is based on expansion from a simply connected 
sub-set. The algorithm could be used to determine cut surfaces, but it is 
shown that simply connected sub-sets are more suitable in practice. 

INTRODUCTION 

Discrete methods for electromagnetic field simulation 
depend on knowledge of the topology of the domain of 
analysis. With total and reduced scalar potential formulations 
it is convenient to have single valued potentials and this can 
be achieved by introducing appropriate cuts [1]. Coupling to 
external circuits or the use of total and reduced vector 
potential formulations introduces the requirement for cuts and 
knowledge of topology for vector potential formulations [2]. 

Analysis of topology based on the geometry of the model, 
or its boundary representation, is being developed [3]. 
However it has been shown that the finite element 
discretisation of a model can be used to develop cuts for 
multiply connected domains [1].  

This paper presents an improved algorithm for determining 
cuts and shows that dividing the discretisation into simply 
connected sub-sets provides an optimal approach that will 
work even for domains with knots. 

CUTTING ALGORITHM 

It has been shown [1] that a ‘Volume integration’ technique 
can be used to determine minor cuts (the cutting surface 
through a volume). This approach follows naturally from the 
definition of a simply connected volume as one where any 
closed curve can be contracted to a point without cutting the 
surface. The algorithm was restricted to enlargement of an 
initially simply connected volume by an addition of simplexes 
that shared faces with the volume, and it cannot therefore 
analyse volumes with edge or vertex only connections. 

A less restrictive form of the addition operator is now 
proposed.  

Given a contiguous simplex finite element discretisation 
D in 3R , where each element ( E ) is simply connected, a 
simply connected sub-set ( S ) of elements can be found by 
growing from any seed element with the expansion operator 

ESS ��                                             (1) 
if and only if, all vertices of E that exist in S are
continuously linked by edges that also exist in S .

The sub-set is closed when no further elements can be 
added. D can be divided into a set of simply connected sub-
sets by repeated application of this procedure, choosing the 

initial seed element external to any existing simply connected 
sub-sets. Applying this algorithm to completely divide D
into simply connected subsets requires O (number of 
elements) operations. 

CUT SURFACES OR SIMPLY CONNECTED SUB-DOMAINS

The gradient of a scalar potential can be used to represent 
magnetostatic fields external to any region where currents are 
flowing. The external space will be multiply connected, and a 
multivalued scalar potential will be required. If the external 
space is cut by surfaces so that it becomes simply connected, 
a jump in scalar potential across the cut surfaces can be 
related to the current flowing through the major cut that links 
to the cut surface (minor cut).  This makes it possible to have 
a single valued scalar potential at all points, to which the 
jump values must be added for a selected orientation of the 
cut surface. 

A complicated assembly of coils will create many cut 
surfaces and with automatically created cut surfaces, several 
may come together at some points. In order to incorporate the 
correct jump in scalar potential for each cut it would be 
necessary to know the orientation of the cut surfaces for each 
element that referenced such a point. However, if the external 
space is modelled using the simply connected sub-sets of 
elements each sub-set can use its own gauge condition and all 
the jumps in scalar potential for each sub-set can be stored 
with respect to a unique global reference value [4]. This 
greatly reduces the computational complexity of the 
procedures required. 

Furthermore, the exterior fields from knotted coils can be 
represented on the independently gauged set of simply 
connected sub-domains. 

MODEL SYMMETRY

The cutting algorithm must be related to the symmetry of 
the model and hence the boundary conditions applied on the 
surface of the model. Periodic boundary conditions and 
assigned potential boundary conditions imply symmetrical 
geometry, which may cause global multiple connectivity 
through the boundary surfaces.  

For models with periodic boundary conditions, the 
boundary surfaces are processed first. It is sufficient to first 
cut any potential global multiple connectivity by covering all 
the periodic boundary surfaces with added simply connected 
cuts. All cuts on a pair of periodic boundary surfaces must be 
synchronised, because the surfaces are paired to each other. 
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Then the assigned scalar potential boundary surfaces can be 
processed, by covering all surfaces of the boundary condition 
except the first one. 

EXAMPLES

A finite element mesh around a knot coil is used to test the 
algorithm. A knot is a special multiply connected geometry 
that provides a thorough test of the algorithm. The knot coil is 
constructed by 12 sections of straight conductors as shown in 
Fig. 1. Reduced potential is defined in the region around the 
coil, which is then surrounded by a rectangular total potential 
box. A mesh of about 145,000 nodes and 852,000 tetrahedra 
elements is built by automatic meshing. 

Fig. 1. A knot coil with reduced potential region around 

The geometry of the multiply connected total potential 
region is detected and cuts are found, as shown in Fig. 2, by 
the algorithm with insignificant CPU time. In Fig. 3 a slice of 
the cuts with the coil around Y-Z plane reveals the complexity 
of the cuts in three dimensions. 

Fig. 2.  Cuts around a knot 

The knot causes the space of the cuts to be multiply 
connected, this has to be cut by two secondary cuts, as shown 
in Fig. 4, a big one in middle and a small one on right. The 
figure is rotated forwards to get clear separation of the cuts. 

Fig. 3. A slice of cuts around Y-Z plane 

Fig. 4. Two secondary Cuts 

More examples with boundary conditions will be presented 
in the full paper.  

CONCLUSIONS

A cutting algorithm for creating simply connected sub-
domains of elements has been developed and shown to be 
effective even for complex geometry around knotted coil 
structures. The automatically generated cuts may have 
complex geometry. The cutting algorithm assures that every 
cut is simply connected. 
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Abstract —Based on the method of moments and the Boundary 
Element Methods, the analysis of grounding systems buried in 
multi-layer soils with finite volumes of different resistivities is presented. 
The unknowns are smaller than other method, and the multi-layer soil 
can be in at least ten layers. Validation of the method is presented by 
comparing it with the result gotten by experiments. 

INTRODUCTION

The grounding grid is one of the important components in 
substation to insure the safety of the operators and the 
equipments when fault occurs. Until now, there are still many 
papers concerning the performance of the grounding grid. 
Several researchers have recently analyzed the study of 
grounding systems in uniform and multi-layer soils [1, 
2].Analysis of grounding systems buried in soils with finite 
volumes of different resistivities has also been carried out [3]. 
However, the analysis considers the sources of electric are 
total (both free and bound) electric charges in the system, 
especially on the boundary surface between the soil layers of 
different resistivities, so the unknowns is large. Moreover, if 
soil structure is multi-layer, this method is unavailable.  

According to the MOM and BEM, in this paper, a method 
to analyze the performance of the grounding grid buried in 
multi-layer soils with finite volumes of different resistivities 
is presented. This type of soil structure is ordinary, such as the 
substation in the city where many buildings are around the 
substation, or the substation near the reservoir. The unknowns 
are only the leakage current densities from conductor 
segments and the surface charge densities on the boundary 
surface between the finite element and the multi-layer soil. 
This method considers not only the soil with the number of 
layers up to ten, but also the frequency of the inject current 
that can be up to 1MHz. The calculated results obtained with 
the method presented in this paper are in agreement with the 
results gotten by experiments. From the comparison of the 
potential distribution, it can be seen that the results with the 
method that consider the influence of the finite volumes are 
better than that does not consider them. 

THEOY OF THE METHOD

Formula of the method

Let us consider a soil model consisting of a finite volume 
in a multi-layer soil as shown in Fig.1. Because of unbalanced 
distribution of the currents in the grid, the MOM is used to 
analyze the grid [1]. At the boundary of the finite volume and 
the soil layer of resistivity, the sources of the electric field are 
surface electric charges of unknown densities. This enables 

formulation of a system of integral equations expressing the 
boundary conditions: on the surface of the conductor, on the 
boundary surface between the finite volume and the multi 
layer soils and on the boundary surfaces between the each 
multi layer soils. For the third condition, if we select suitable 
Green’s function, it will be satisfied. 

    air 

Fig. 1. Soil model with a finite volume 

Let kJ is the leakage current density from conductor 

segment k , and p  is the surface charge density on surface 

element p .

Based on the boundary condition on the surface between 
the finite volume and the multi-layer soil, the surface charge 
density p  can be gotten by: 
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12       (1)

where sE is due to all the charges on the surface between 
the finite volume and the multi-layer soils except surface 

element p , oE is due to all the leakage currents on the 

conductor segments. Then sE and oE on element p can be 

expressed as:
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Let k  is the scalar electric potential at the central point 

of conductor k , we have 
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If there are m surface elements and n conductor segments, 
based on (1) and (4), we have m+n unknowns and the same 
number equations. 

Calculation of electric field

In order to get p , sE and oE must be calculated first. 

Because Green’s function has infinite terms in multi-layer 
soil if the traditional image method is used, the 
computation will become very complex. Here we use the 
complex image method by which Green’s function has 
only a few terms. 

VALIDATION

In order to verify this method, experiments are done on a 
real small grid system for test. Around the grid, there are 
three buildings, the grid and the buildings are shown in Fig. 2. 
The grid to be test is shown in Fig. 3. The builds’ grounding 
system is embedded in concrete. The soil has four layers, and 
the resistivities are shown in Table 1. When 30A current with 
the frequency 30Hz is injected into the grid at point A, 
comparison of the ground potential rise distribution along the 
line 1, 2, 3 on the ground surface between measurement and 
the calculation is shown in Fig. 4, Fig. 5, and Fig. 6. 

Fig. 2. The buildings around the grid 

Fig. 3. The grid for testing 

TABLE I SOIL RESISTIVITIES

Layer Resistivity m  thickness m
1 54.66 3.867 
2 12.31 3.432 
3 213.7 19.12 
4 12.72 

Fig. 4. Comparison of the potential distribution along the line 1 

Fig. 5. Comparison of the potential distribution along the line 2 

Fig. 6. Comparison of the potential distribution along the line 3

CONCLUSION

In this paper, based on the method of moment and 
boundary element method, a method to analyze the grounding 
grids in frequency domain is present. This method can 
analyze the grounding grid in multi-layer soil structure with 
finite volume of different resistivities. Comparison show that 
the method presented in this paper is effective and better than 
the method does not consider the influence of the finite 
volume of different resistivities. 
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Abstract – A numerical algorithm for simulation of the electric field, 
generated by charged fluid in a partially filled cylindrical tank is 
presented. The fluid is originally uniformly charged to some level. Then, 
the charge is dissipated due to volume and surface conductions. The rate 
of charge dissipation is calculated by solving the current continuity 
equation. The electric field distribution is also evaluated at each instant 
of time. Both problems are solved using the Finite Element Method in 
the time domain. The results of simulation show the effect of both the 
volume and surface conduction on the process dynamics. 

INTRODUCTION 

Electric charging of low conductivity liquids is a 
commonly known phenomenon in chemical engineering; this 
happens, for example, during handling of gasoline in the 
petroleum industry. Shortly after filling a storage tank with 
such a fluid there is a substantial space charge, which quickly 
disappears, if the fluid conductivity is sufficiently large. 
However, for poorly conductive liquids the charge relaxation 
can be very slow. 

The space charge accumulated in the stored liquid is a 
source of the electric field; when its value exceeds the 
breakdown limit of the gas above the liquid it can cause a 
discharge and ignite an explosion. In order to reduce the 
probability of the accident, the charge relaxation time should 
be evaluated, so some operations are not performed until 
most of the charge relaxes to the walls of a metal tank. 

The estimation of the charge relaxation time and 
calculation of the electric field distribution was a subject of 
some publications, for example [1,2]. However, in all of them 
different analytical approaches were used. While this was 
sufficient for regularly shaped tanks, most often cylindrical 
ones, many important factors couldn’t be analyzed: for 
example diffusion and electroconvection of charges and 
electrohydrodynamic flow. The analytical approach is also 
ineffective for more complicated charge transport models, 
especially when the initial space charge density is not 
uniform. 

The presented paper describes a numerical model for the 
problem of the electric charge relaxation in a partially filled 
cylindrical tank, and it is based on the Finite Element Method 
(FEM). For a given space charge density, the electric field is 
calculated. Then, the dynamics of the charge relaxation is 
analyzed by solving the charge conservation equation: the 
FEM is used again, but in time domain. The model includes 

the charge diffusion, motion of the fluid and the effect of the 
surface charge and surface conduction. 

MATHEMATICAL MODEL 

It is assumed that a cylindrical tank of radius R and height 
h is partially filled with a charged fluid, so that the fluid layer 
has a thickness a. The fluid is conducting, with conductivity 
� and permittivity �, charged with the space charge density �.
The gas above the fluid is air (permittivity �0).

The charge density produces the electric field, which can 
be easily calculated by solving the Poisson equation 

�� ��� V2    (1) 
where V is the electric scalar potential. 

As the medium is conducting, the electric charge will 
dissipate to the tank walls. At any point of space the charge 
conservation equation has to be satisfied: 

0����

�

� J
t

�

�

  (2) 

where J
�

is the electric current density. In general case 
J
�

depends on the charge density, velocity of the charge 
motion and the charge diffusion 

�� ��� DvJ �

�

(3)
where v� is the charge velocity and D – diffusion coefficient. 

Two factors affect the charge velocity: fluid motion u� and 
electric force, which depends on the assumed charge 
transport model. For a relatively well conducting fluids the 
ohmic conduction model can be assumed and 

�� ��� DEJ
��

(4)
Substitution (4) into the charge conservation law (2) 

yields the equation for the space charge relaxation [3] 
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(5)

The analytical solution for this equation exists only if 
0�u� (stationary fluid) and D=0 (no charge diffusion). In 

this case 

)exp()( 0 tt
�

�

�� �� (6)
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There is evidence that during the charge relaxation in a 
tank, some charge accumulates on the fluid-air interface, 
what significantly alters the relaxation dynamics. Dissipation 
of this charge is strongly affected by the surface conduction. 
The following equation can be derived from the charge 
conservation equation for the surface charge density [4] 

tssn
s EE

t
����

�

�

��

�

(7)

where: s� is the surface charge density, s� - surface 
conductivity, En and Et – normal and tangential components 
of the electric field on the fluid surface, respectively. 

NUMERICAL ALGORITHM 

The numerical algorithm for simultaneous solution of  (1), 
(5) and (7) is based on the Finite Element Method. The 
Poisson equation (1) is handled in a conventional way with 
the possibility of taking into account both space and surface 
charges. Equation (5) needs to be solved in the time domain; 
the FEM is used again with the time derivative expressed by 
the explicit differential scheme. A simple integration 
technique is sufficient to compute the surface charge density 
(7).

The charge diffusion term in (5) is usually small and the 
resulting algebraic system is not diagonally dominant. A 
special upwinding scheme has to be used in order to avoid 
numerical instabilities. 

RESULTS 

The problem has been simulated for a tank partially filled 
to different levels, assuming that the fluid relative 
permittivity was equal to 2.0. The whole domain was 
discretized into about 10000 triangular elements and the 
linear interpolation of solution has been used. The time step 
has been selected by trial-and-error method, to compromise 

the accuracy of calculations and as short as possible time of 
computations. 

The decay of the electric potential on the surface of fluid 
at the point on the axis of symmetry, for different surface 
conductivity values and stationary fluid, is shown in Fig. 1. In 
the logarithmic scale all curves are practically linear and their 
slope can be compared with the charge relaxation curve, 
which in this case follow the theoretical curve given by (6). 
The potential decay is much slower than the charge decay, 
due to accumulation of the surface charge. The surface 
conduction accelerates the process and for very high surface 
conductivity both charge and potential decay should follow 
the same line.  

The surface charge density first increases due to repulsion 
of the volume charge density, then it starts to decrease as a 
result of the surface conduction (Fig. 2). 

CONCLUSIONS 

The presented numerical algorithm can be effectively 
used to predict the electric charge relaxation and electric field 
distribution in a conducting tank partially filled with a 
slightly conducting and electrically charged fluid. The results 
of simulation can be used to predict the relaxation time and 
magnitude of the electric field, which is responsible for the 
eventual electric discharge. 
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Abstract— Within the framework of BEM, one switches from 
the integral eq. technique to that one of integral relations. 
Therefore a finite basis of harmonic functions is involved. In 
this way the polar kernel used in the classical BEM is now 
avoided. Consequently a higher accuracy and a significant 
reduction of required redundant data are achieved. Moreover a 
wide range of kernels ensures versatility of the approach. 

INTRODUCTION

The deriving of Kirchhoff’s formula, the nucleus of BEM, 
starts from the 2.nd Green identity:

( )
( )

( )
( )∫∫ −=∂∂−∂∂
VA

dvUVVUdAnUVnVU ∆∆  (1)

where ( ) PPPPRR ′−=′= rr,  [1], [2]. This function induces 

analytical troubles, but more seriously, originates additional 
computation errors. Moreover BEM requires redundant field 
data during the computation of ϕ  in the domain. This feature 

is implied by the particular structure of the used Kirchhoff’s 
formula. These two features of  BEM may be relaxed by a 
different approach to BEM. The aim of the paper is to avoid 
the above specified negative aspects, and thereby to improve 
method accuracy and reduce computing time. At the same
time, to obtain a higher generality of BEM, by different kernel 
types and more space for computation experiments.

IMPACT OF SOME BEMCHARACTERISTICS

The Kirchhoff’s formula . This one results from (1) by

taking ;, 1−=ϕ= RVU  one assume s that within (V) the 

permittivity ε =const, and the Poisson eq. ∆ϕ = ρ v / ε, is
verified, where vρ  denotes the volume density of electric 

charge. As (1) holds provided all integrands are continuous 
functions, by isolating the singularity point one comes to the 
result

( ) ( ) ( )

( ) ( )[ ] .

1
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1

AdPnRPnR

vdPRPP
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ϕϕ

ρ
ε

ϕΩ
   (2a)

with
( ) ( ) ( ) ( ) ( )AVPAPVPP ∪∉∈∈= ,0;,2;;4 ππΩ    (2b)

If 0=vρ  we get the Kirchhoff’s formula. The polar kernel R is 

the mathematic tool necessaary to extract ϕ from the  first 
integral in the right- side of (1). Eq.(2a) is used by BEM in 

order to determine ϕ on (A ) and within (V). The new

approach should produce non-polar kernels. This possibility 
is due to the fact, that the extraction of f is not mandatory.

The Fredholm integral eq. In order to determine ϕ  or 

n∂∂ϕ  on boundary (A), point P will be placed on (A). Just 

now there occur significant troubles induced by ∞→R1 .

There results a Fredholm  eq. As one knows, its form is

( ) ( ) ( ) ( ) ( )., PFdAPPPKPPa
A

=′′+ ∫ ϕϕ      (3)

Above, ( ) ( )PFPa ,  and ( )PPK ′,  are given functions. With 

respect to (2a) 
( ) ( )PPRPPK ′=′ ,,    (4)

where R was defined above. If a Dirichlet problem is 
considered, with respect to ϕ  eq. (3) is a Fredholm eq. of 2.nd 

kind If a Neumann problem has to be solved, (3) turns into a 
Fredholm eq. of 1.st kind, as ( ) .0≡Pa

Depending on the kernel,  the Fredholm eq. may not
possess unique solution. Fortunately for 1−= RK  a unique 

solution is ensured. Therefore, the use of another kernel has 
to be carefully considered. The new approach will produce a 
new type of problem.

T HE PROPOSED METHOD

Integral relations obtained by means of a iK  finite basis. 

Integral eq. technique will not be more applied here. Instead of 
( ),, PPK ′  a set of ( )PKi ′  should be used. Taking U = ϕ with 

f verifying Poisson eq. and ( ),PKV ′=  with harmonic K, eq. 

(1) turns into

( ) ( ) ( )
.1 ∫∫∫ +∂∂⋅=⋅∂∂

V
v

AA
dvKdAnKdAnK ρεϕϕ (5)

With Ni ,1=  eq. (5) generates a system of integral relations. 

By the discretization NjPP j ,1, ==′  one gets an algebraic 

system with the unknowns ( )jPϕ  or ( )jPn∂∂ϕ  depending 

on the given boundary values. One has to take care that 
( ){ }PK ′  is not reductible to ( ){ }., PPK i ′  This requirement will 

be satisfied by using a set of linearly independent harmonic 
functions ( ).PK i ′  As such a function basis, one may take a 

certain subset of harmonic polynomials of completely
different degrees.

A different approach to BEM by means of a harmonic function basis
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2

Homogeneous harmonic polynomials. Any harmonic
polynomial ( )yxPn ,  of degree n is a linear combination of 

homogeneous harmonic polynomials ( ) :,0,, nmyxQm =

( ) ( )∑
=

=
n

m
mn yxQyxP

0

,, .     (6)

But any harmonic ( )yxQm ,  includes only two independent 

coefficients (except the constant polynomial). Indeed, we write 

mQ  in the form

` ( ) ( ) ( ) ( )...., ,1,
1

0, xqxqyxqyyxQ mmm
m

m
m

m +++= − (7)

where ( ) .,,
l

lmlm xaxq = By a recurrent procedure one derives 

the expressions 0,2,2, mkmkm aa λ=  with 
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If a 3D problem will be solved, homogeneous harmonic 
polynomials ( )zyxQm ,,  are to be considered. By quite similar 

but more complicated developments a suitable algorithm is 
built up.

Field computation within the domain. Let us consider the
question of potential determination. Let be a surface (S)
intersecting the domain (V). This surface (S) will intercept on 
the boundary (A) the portion (A1) respectively (A) on (S) the 
portion (A0). If 

( ) ( )0,0 APPK i ∈′=′    (10)

then (5) becomes
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ρε

ϕϕϕ
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System (11), Ni ,1=  is discretized for ;,1, NkPP k =′=′

finally one gets the node values ( ).kk P′= ϕϕ
Eq. (11) allows to assess ϕ  on ( )0A  by means of −ϕ  and 

−∂∂ nϕ  values upon the portion ( ) ( )AA ∈1  only, and of 

charge density within the respective subdomain ( ) ( ).1 VV ⊂
This result may be explained by the fact that n∂∂ϕ  on ( )1A

also includes the effect of ϕ  given upon the portion

( ) ( ).1AA −  Similar considerations are valid with respect to the 

influence of vρ  included in ( ) ( ).1VV −  Thereby (at this 

computation step) a significant reduction of(redundant) data
is achieved.

Obviously, there are many Pn that meet the above
requirement for K. Note that eq.s (2a),(11) refer to a subdomain 
with constant ε. Accordingly, we have to determine ϕ and 

∂ϕ/∂n on all media separating surfaces. Each surface involves 
many additional Ki.

Fig. 1a shows a 2D domain in connection with a saving time 
procedure. First, a coarse domain dividing by the segments 
AB and CD is done,wherein (Ao) = (OB) ∪ (OC). Afterwards a 
fine mesh will be practised. The last one provides with eq.s 
including much less unknowns . A better accuracy is achieved 
if  one starts from the  four subdomain boundaries.

Secondly, one may also determine the field strength
components For instance by taking Ki  verifying the
requirement

( ) ( )0,0 APPKi ∈′=′    (12)

one gets ∂ϕ/∂n. Using suitable  Ki the other two field strength 
components will also be obtained.
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 Fig. 1 a) A time saving algorithm to compute the potential in domain.
  b) Configuration used for performance comparison

NUMERICAL RESULTS

A multiconductor configuration was considered [3]. The
field computation results obtained by both BEM and the 
proposed approach (PA) were compared. The relative values 
are presented in TABLE I.

T ABLE I. ϕ - VALUE RATIO

Point A B C D

BEM/PA-values 1.01 0.98 0.99 1.02

The processing time referring to some variants was 2.6-8.0
lower at the proposed approach.
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Abstract-In order to avoid the singularity of Boundary Element 
Method (BEM), the Virtual Boundary Element Method (VBEM) is 
investigated for calculating the three dimensional electrical field 
distribution of SF6 high voltage interrupter. the mathematic model and 
its discretized form of VBEM have been set up. As an example, the three 
dimensional electrical field distribution of a 500kV SF6 high voltage 
interrupter has been well calculated. 
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INTRODUCTION

As it is known that the thorny problem of BEM is the 
singular integral problem. To avoid the singularity, an attempt 
is made on calculating the three dimensional electrical field 
distribution. In view of the electrical field problem, the virtual 
boundary element method has been investigated. The 
mathematic model and its discretized form of VBEM have 
been set up. As the virtual boundary has a properly distance 
from the real boundary, the singular integral problem will not 
ever emerge. As an example, the three dimensional electrical 
field distribution of a 500kV SF6 high voltage interrupter is 
well calculated. The method developed in this paper has 
opened a way in calculating three dimensional electrical field 
problem as well as in investigation of insulation and open 
properties. 

BASIC EQUATION

The electric field distribution in high voltage interrupter 
can be described by Laplace equation with Dirichet and 
Neuman boundary conditions, i.e. 
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Suppose that a limited virtual boundary is made in the 
unlimited region, and that the unknown distributed virtual 
sources are acted on that virtual boundary and write it as 

))(( /
����F which makes the virtual boundary /

� to 
satisfy the boundary condition. Thus the problem for solving 
original equation (1) is transformed into the problem of 
solving unknown distributed virtual sources F acted on the 
virtual boundary.  

According to the basic solution and superposition principle, 

the integral expressions of � and 
n�

�� of arbitrary point to 

be solved among the region � or on the boundary /
� can

be set up as 

�
�

��

/

/ )()(),(*)( ����� dFXX (2)

�
�

�

�

�

�

�

�

/

/ )()(),(*)( ����� dFX
n

X
n

       (3) 

where R�� 41�

� is the basic solution. In equations (2) and 
(3), F is unknown function to be solved. For solving F, the 
variance functional equation is set up as  
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Where 21 , NN are the number of node point divided on 1�

and 2� ; 21 ,�� are relative weighted coefficent. Take the 
extreme of equation (4), i.e. 0�RJ� , from which the virtual 
boundary element equation is obtained 
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DISCRETIZATION

Discretize the virtual boundary surface by 8 node 
quadrilateral element, then  
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Substitute equation (6) into equation (2) and (3), we get 
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Where M is the element division number on the virtual 
boundary. Accumulate the integral term of virtual sources of 
the same node point between two adjoint elements, and 
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according to the order number of node point to arrange the 
virtual sources, then we have 

XH ��)(x�

XT ��

�

�

n
�

Where  
T

NNN FFFttthhh },,,{};,,{};,,,{ 212121 ��� ��� XTH
in this way, the integral equation (5) is transformed into 
the following form 
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It can be seen from equation (8) that the unknown variables 
are not contained in the integrand. Thus the equation (8) is a 
algebraic equation set with N unknown variables. The matrix 
form is  

   BXG ��     �9�

EXAMPLE

As an example, the field of a 500 kV high voltage 
interrupter is calculated by VBEM provided in this paper. The 
structure to be calculated is shown in Fig.1. As it has a 
parallel capacitor, the electric field distribution is a three 
dimensional problem. 

1. moveable main contact  2. moveable arc contact  3. arc nozzle  
4. stational main contact  5. stational arc contact  6.parallel capacitor  
7,8. shield 

Fig.1. Structure diagram 

Fig.2. Potential distribution without considering the parallel capacitor 

Fig.3. Potential distribution by considering the exist of parallel capacitor 

Fig.4 Electric field strength distribution by considering the exist of parallel 
capacitor 

The virtual boundary surface is discretized into 1094 
elements with 3240 nodes. The way of constructing virtual 
boundary is that, select a proper point from inside field area 
as the central point, from which to real boundary point make a 
radial line and the virtual boundary point is required to be on 
this line, and then take double distance from central point to 
real boundary point as this virtual boundary point. The 
calculation result is shown in Fig.3. Fig.2 is the equal 
potential distribution without parallel capacitor calculated by 
axisymmetric boundary element method. Fig.4 is electric field 
strength distribution by considering the exist of parallel 
capacitor. 

CONCLUSION

In this paper, the virtual boundary element method is 
introduced to calculate three dimensional electrid field 
distribution of high voltage apparatus. The mathematic model 
and its discretizing form are set up for electric field analysis 
problem. 

The singularity problem of BEM is naturally avoided. The 
calculation result shows that the method provided in this 
paper is feasible for calculating the electric field problem and 
can be used in analyzing the insulation problem and open 
property of high voltage equipment.  
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Application of Multiple Grid Method 
in Electric Field Calculation of High Voltage Interrupter

LI LI   Wang Erzhi 
College of Electrical Engineering 

Shenyang University of Tecuonlogy, shenyang,110023,China 

Abstract–In view of the disadvantage of Finite Difference Method 
(FDM) in handling the electric field with complicated boundary , in this 
paper, the differential equation is employed to generate an regular 
calculation grid from original calculated region, so the approximation 
of boundary condition in calculation is avoided. The Multiple Grid 
Method (MGM) is adopted in electric field calculation on the 
transformed region for speeding up the convergency and increase the 
calculation precision. 

INTRODUCTION

The electric field calculation possesses a significant 
position in researching dielectric property which is tightly 
connected with open property investigation and  rational 
structure design of interrupter. In numerical calculation, the 
FDM is a very simple, and earliest developed method, but its 
disadvantage is complicated boundary manipulation. In view 
of this problem, the differential equation has been employed 
to produce a simple calculation region with rectangular grid 
and boundary which corresponds to the original region with 
complicated boundary. So the approximation of boundary 
condition in FDM is avoided and the electric field 
calculation can be proceeded in transformed simple region. 
In order to speed up the convergency and increase the 
precision, the multiple grid method has been adopted to 
calculate the electric field. of sF6 high voltage interrupter. 

REGULAR GRID GENERATION

(1) porcelain insulator    (2) stationary main contact
(3) stationary arc contact  (4) arc nozzle  
(5) movable main contact  (6) movable arc contact 

Fig. 1  schematic structure of sF6 high voltage interrupter 
Fig 1 is the schematic structure diagram of sF6 high

voltage interrupter. In this paper, the Laplace equation is 
employed to generate the regular grid. The method is based 
on the coordinate transformation. Let yx, to express the 
physical plan( original region) and �� , is the calculated 
plan(transformed plan). 

Take the equation set  

�
�

�

�

�

��

��

0

0

yyxx

yyxx

��

��

                          (1) 

as the Direchet boundary problem then the physic plan with 
complicated boundary can be transformed to the calculated 
plan with rectangular grid and boundary by solving the 
difference form of equation (1) using relaxed iteration 
method. Fig.2 shows the mesh diagram of sF6 high voltage 
interrupter generated by this method, the meshes in this 
region corresponds one by one to [0,1]×[0,1] square mesh 
on regular region as shown in Fig.3.  

Fig.2 mesh diagram of sF6 high voltage interrupter 

Fig.3 calculation region with regular mesh and boundary

APPLICATION OF

MULTIPLE GRID METHOD

The electric field distribution of sF6 high voltage 
interrupter can be described by equation  
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through coordinate transformation 
),(),,( ���� yyxx ��

we obtain the electric field equation on the calculation plan 
(regular region)as 
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where   22
yxA �� �� yyxxB ���� ��

22
yxC �� ��

using the traditional central difference to discretize above 
equation, we obtain 
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take n
ji,� and 1

,
�n
ji� as the thn and thn 1� iteration value 

respectively, the Jacobi iteration can be written as  
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the large storage for Jacobi-iteration is required for both old 
iteration value storage as well as new iteration value storage, 
and also the convergency of Jacobi-iteration is poor . In this 
paper, the Gauss-iteration form 
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is adopted. Comparing with Jacobi-iteration, the 
Gauss-iteration has the advantages of fast convergency; less 
storage requirement and effectiveness for eliminating the 
high frequency error components. Well ,the low frequency 
error components can be considered as the high frequency 
error components on coarse grid and also can be eliminated 
through Gauss-iteration. The multiple grid method is just a 
method that the iteration is proceeded again and again 
supersede at the different scale. The electric field 
distribution of sF6 high voltage interrupter with 200mm 
strock is calculated on the [0,1]×[0,1] calculation plan by 
multiple grid method. The discretized equation can be 
written in matrix form 

MMM fL � (7)
the calculation steps are as follow:  

step1: take 0(0)
M � at refined grid of thM layer(the grid 

scale 32/1���� yx ), solve equation (7) by Gauss iteration 
method, after 1� times iterations, the approximation 1M

is obtained and satisfacted by 
11 MMM fL �

step2: transform 1M to the coarse grid of 1�M layer(the 
grid scale 16/1���� yx ), the transformation from refined 
grid to coarse grid is controlled by restrict operator 

2h
hI which is satisfacted by   

1M
2h
h

0
1M I�

�

let    )f(fILf
1MM

2h
h

0
1M1M1M ���

���

and take 0
1M�

as initial value, solve equation  
1M1M1M fL

���

�

through 2� times iterations, then again transform 1M�

to 
even more coarse grid. The rest procedure may by deduced 
be analogy until we have 1 at most coarse grid layer 
( 2/1���� yx ).
Step3: interpolate 1 to refiner grid layer ( 4/1���� yx ). In 
this procedure, the nodes should be added and the process 
should be controlled by interpolation operator h

2hI which 
satisfacted by 

1Ih
2h2 �

take new 2 as initial value 0
2 , solve equation 

222 fL �

a more accurate value 2 is obtained after q times 
iterations. Then again back substitution and solve 3 , and 
so on utile M is obtained. Through iteration on refined 
grid and  modifying on coarse grid, the potential 
distribution of sF6 high voltage interrupter is obtained as 
shown in Fig.4 

             Fig.4  potential distribution 
The peculiarity of MGM is of high speed convergency, 

even when the discretizing becomes much more fine, the 
convergency speed is no ever slow down. But it doesn’t for 
traditional FDM. 

CONCLUSION

The differential equation has employed in this paper for 
transforming the physic plan to regular plan which makes 
the finite difference method well suitable for handling the 
complicated boundary problem, and MGM and 
Gauss-iteration method have been used for calculating the 
electric field of sF6 high voltage interrupter. The calculation 
shows that it needs only 2~3 times iteration to get a certain 
calculation precision. So the DFM is well improved by 
virson presented by this paper. 
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Benchmark for Computation of Electric Field with Charge Simulation Method 

K.Palaniswamy   and    K.Udayakumar          
High Voltage Division,  Anna  University,   

Chennai - 600025,  India.  
E-mail: palsy48@hotmail.com   

Abstract- In this paper, evaluation of the accuracy of 
computation of electric field with Charge Simulation Method and 
exploration of the possibility of increased accuracy are discussed. 
The problem identified for this test could be solved by analytical 
method and hence the reference results are free from errors. This 
test problem can also be applied to other numerical codes to a 
limited extent. Simulation of this problem is done with a Hybrid 
Charge Method, which is a combination of Charge Simulation 
Method and Surface Charge Simulation Method. 

I.  INTRODUCTION

Charge Simulation Method (CSM), [1] though powerful 
to solve many electric field problems, has some limitations in 
its application, as in the case of multi-dielectric field 
problems, asymmetric problems and problems with thin 
regions. Moreover, effective application of this method 
depends on proper placing of discrete charges. The ratio of 
the depth of simulation of a charge from its contour point to 
the distance between this contour point and the neighboring 
contour point influences the accuracy. Different values are 
assigned to this ratio, known as assignment factor, ranging 
from 0.5 to 2 [1,2].  

Studies are being made on benchmarking a new code, by 
comparison with other codes. But other numerical codes 
could not be relied upon too much for this purpose, as they 
too introduce errors. This study is on CSM, a popular code, 
with a test problem whose analytical results are free from 
errors. This test problem could be applied to other numerical 
codes also, along with some other problems for simulation of 
asymmetry and thin regions. A Hybrid Charge Method [3] (a 
combination of CSM and Surface Charge Simulation 
Method) has been made use of in this study. The study could 
not be treated as exhaustive but aims at improving 
computation with CSM. 

II.  ERRORS IN COMPUTATION WITH CSM 

In conventional estimation of the accuracy of results with 
CSM, some test points are chosen at the electrode surfaces 
and dielectric interfaces. The deviation of the computed 
potential at a test point on an electrode from the applied 
potential gives potential error. The discrepancy in the normal 
components of computed flux density (or in the tangential 
components of computed field) on either side of a dielectric 
interface gives field discrepancy. In a similar way potential 
discrepancies at the dielectric interfaces are found. 

Unlike potential error at the electrode surface, field 
discrepancy is only a relative error, as the field values are 
unknown beforehand. Moreover, field discrepancy could 

project even a normal level of errors in computation as 
abnormally high, by comparing computed values on both 
sides of a location where the actual level of the field itself is 
very weak. Also, it does not indicate the actual magnitude of 
errors in computation, however large, if such errors occur in 
the same scale on both sides of the dielectric interfaces.  

A Study on the Insulator Shown in Fig. 1a) 

Fig. 1a) shows an insulator with �r=6 and a disc electrode 
at a potential of 100 kV. Computations were done with CSM 
for maximum values of field at the dielectric interface of this 
problem (near the electrode) for different values of 
assignment factor and they are given in Table I.  

TABLE  I.   RESULTS  WITH  CSM  FOR  THE  INSULATOR  IN  FIG. 1.a)  

Assmt
.
Factor 

0.5 0.6 0.8 1. 1.2 1.6 2. 2.4 2.8

Emax.
V/cm 212 204 198 197 196 196 196 196 197

The results show different values of computed field with 
variation in assignment factor. The maximum potential 
discrepancy and field discrepancies at the dielectric interface 
in all the above computations were less than 1%. But these 
estimated errors do not indicate which results are closer to the 
correct value. In complicated problems this deviation is very 
high. Hence, special tests are required to quantify the errors 
in multi-dielectric problems.

III.  TEST PROBLEM FOR BENCHMARKING

If a conducting sphere is introduced in a uniform 
external electric field, the field is distorted. The resultant field 
pattern could be computed analytically using Legendre 
polynomials. If the polar axis of the sphere is assumed 
parallel to the external field, the magnitude of the maximum 
resultant field is at the poles of the sphere, being three times 
the external field. The field is normal at the surface of the 
sphere, with sinusoidal variation. This problem was applied 
to find out the influence of assignment factor on the results 
with CSM. The floating electrode (conducting sphere) in this 
example is simulated as a dielectric with a very high value of 
dielectric constant �r (106), a method adopted by some 
authors [4].  

Benchmarking requires a very accurate simulation of 
uniform field free from any deviation, both in magnitude and 
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direction. CSM is not suitable for this purpose, since discrete 
charges introduce distortions. Only distributed charges are 
suitable for simulation of uniform field for the test problem. 

Fig 1.   (a) A cylindrical insulator with HV electrode 
(b) Axi-symmetric test problem for benchmarking 

Fig. 1b) shows the arrangement for simulation. The main 
electrode is flat and wide enough to produce uniform field. A 
hemisphere, axi-symmetric with the main electrode, is 
simulated with its flat surface on the ground plane. Its 
diameter can be varied for study, but it must be very small 
(1.5 meter or less in this study) compared to the height of the 
main electrode. This hemisphere together with its image 
forms a sphere, at the center of the space covered by the main 
electrode and its image. First, the main electrode alone (at a 
potential of 10 volts) was simulated with distributed charges 
to ascertain the uniformity and the accuracy of the field (1 
volt/meter) in and around the region where the hemisphere 
was to be simulated later. This simulation produced uniform
field with errors less than 0.00005% in this region. 

IV.  RESULTS   

Applying Hybrid Charge Method, the hemisphere was 
simulated with discrete charges and the main electrode with 
distributed charges. Assignment factors adopted to simulate 
the hemisphere (1 meter diameter) and the corresponding 
computed field Emax at the hemispheric pole are given in 
Table II. When the assignment factor was above 1.3, 
condition- number of the matrix and field discrepancy were 
increasingly large, sometimes leading to near singularity; 
even otherwise, the results were almost constant for this 
factor above 1.3. Hence those results are not shown. 

As seen from Table II, errors in computation are large if 
assignment factor is below 0.8, but if it is in the range of 0.8 
to 1, results are moderately accurate. If its value is in the 
range of 1 to 1.2, fairly good results are achieved. The results 
are highly accurate when this factor is in the range of 1.2 to 
1.3. (The exact value of Emax on top of the hemisphere is 
3000 milli-volt/m). Only a little increase in accuracy is 
achieved when it is in the range of 1.3 to 1.5, but it 
sometimes leads to near singularity.  

Graphs for the computed field at the surface of the 
hemisphere were found very close to sinusoidal. The 
percentage errors in the computed field along the surface of 
the hemisphere are as shown in Fig. 2.

Results on increasing the diameter of the hemisphere to 
1.5 meter, or reducing �r to 104, were in close conformity 
with those given in Table II, with a slight increase in error, by 
0.02% or less. Stable results were obtained without the 
problem of near-singularity when the value of �r was reduced 
to 104.

TABLE  II.   RESULTS  FOR THE TEST PROBLEM  IN  FIG. 1.b)  

Assmt. 
Factor 0.7 0.8 0.9 1. 1.1 1.2   1.3 
Emax.
mV/m 2963 2980 2989 2994 2997 2999 2999.6
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Fig 2.   % Errors in field on the surface of the hemisphere (curves 
1 to 4 are due to the assignment factors at 0.8, 1.0, 1.2 and 1.4 
respectively)

The value of �r can be reduced to any value to simulate 
the hemisphere as a practical dielectric material but the 
maximum field at the pole would be less than three times the 
external field. The computed results are compared with the 
actual values obtained analytically using Legendre 
polynomials, and the errors are quantified in absolute terms, 
the details of which will be published later. 

Simulation of the main electrode with discrete charges in 
the absence of the hemisphere resulted in lesser potential 
error when the assignment factor was in the range of 1.2 to 
1.5, very similar to the above study for dielectric simulation. 

V. CONCLUSION

In this paper, details of the study with a test problem for 
benchmarking and quantitative assessment of CSM are given. 
Assignment factor in the range of 1.2 to 1.5 gives highly 
accurate results, but if it is above 1.3, near-singularity may 
sometimes occur. 
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Analysis of Large Grounding Grid with Two-end Grounded Cables by the Method of 
Coupling Electromagnetic Field with Circuit Equations 
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Abstract �Based on the method of moment, a numerical method 
coupling electromagnetic field with circuit equations is presented to 
analyze the grounding grid with cables connected to it in frequency 
domain. The grounding grids can be buried in multi-layer soil. The 
number of the unknown variables is equal to the number of the segments 
needed by the method of moment. The effect on the performance of a 
large grounding grid made of steel by a coaxial shielded cable which is 
grounded at its two ends is analyzed. Both the method and the results 
are useful for designing the large grounding grids. 

INTRODUCTION

The grounding grid is an important component for safety 
in substation. To transmit the signal for control, there are 
many coaxial shielded cables in substation. In order to reduce 
the disturbance produced by inductive coupling, the cables’ 
sheaths are connected to the grounding grid at their two ends. 
This is based on the supposition that there is little voltage 
difference on the grounding grid between the cable’s two 
ends. In fact, because of the existence of resistance in the 
material of grounding grid, the voltage difference always 
exists. Thus, current will flow through the sheath of the cable, 
which may not only change the current distribution on the 
grounding grid but also change the step voltage and the touch 
voltage distribution. In china, steel is often used to build the 
grounding grid. Steel has larger resistivity and much larger 
permeability than copper. If the area is very large, the voltage 
difference on grounding grid may become apparent. 

Many papers have analyzed the performance of the grid 
[1-3], but they don’t take account of the situation that other 
kind of conductors is connected to the grid. In this paper, by 
using the method of coupling electromagnetic field with 
circuit equations, a method that can be used to analyze the 
grounding grid with cables connected to it is presented. With 
the method, the effect on the performance of a large 
grounding grid made of steel by a coaxial shielded cable 
which is grounded at its two ends is analyzed. 

PRINCIPLES

Method of moment is used to analyze the grid. On the 
conductor’s surface, the potential difference on the inner 
surface of the conductor must be equal to that on the outer 
surface. The potential difference on the inner surface is 

determined by: 
lsi Z I��                                           (1) 

where
)( cs ZLjlZ �� �                                   (2) 

Zs is the self inductance of the conductor, L and Zc are the 
external inductance and the internal impedance of the 
conductor of a unit length [3]. The potential difference on the 
outer surface is determined by: 
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N

j
jnje R

1
,I�                                     (3) 

where Rj is equal to the scalar electric potential caused by 
conductor j when a unit current leaks from the conductor [3], 
N is the number of the segments, and In,j is the current leaked 
from the segment j.

Let’s suppose that the longitudinal current in the conductor 
is centralized on the axis, and the leakage current in the 
conductor is discharged from the central point of the 
conductor. If the segment is connected to a cable, it can be 
treated as following : 
Suppose a grounding grid be divided into N segments. For 
segment k as shown in Fig. 1, the leakage current of the k-th
segment In, k can be expressed by the longitudinal currents as: 

��
�� klklkn ,,, III                                  (4) 

where
�kl,I  and 

�kl,I  are the longitudinal currents of 

conductor k at the end points k- and k+ respectively. From the 
equivalent circuit of Fig. 1 shown in Fig. 2, we use the node 
analysis and select node k- and p+ to write equations: 
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where ik��  and ip��  are the potentials at point k-i and p+i

and can be determined from (3),  l
kikZ
�

� ,  and l
pipZ
�

� ,  are the 

self inductances between the corresponding points of the 
conductors and can be determined from (2). Zcable is the 
inductance of the cable’s sheath. By solving (5), the voltages 
at node k- and p+ are obtained. Then, 

�kl ,I can be gotten by:  
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Fig. 1. A part of a grid connected to a cable. 

Fig. 2.  The equivalent circuit of Fig. 1. 

l
kkkkkl Z
���

�� ,, )( ��I                                 (6) 

By substituting (3) into (5), 
�kl ,I  in (6) can be expressed by 

all the leakage currents. If there is another cable connected to 
point k+,

�kl ,I can also be determined just like 
�kl ,I . If no 

cable is connected to segment k, Zcable in (5) is equal to 
infinite. Then, (4) will have only the leakage currents: 

��

�

N

j
jnkjkn c

1
,,, II                                  (7) 

where kjc ,  is a coefficient. The injected currents to the grid 
can substitute 

�kl ,I  directly. Then, by putting In,k to the left 

side of (7) and putting the injected currents to the right side of 
(7), an equation with N unknown leakage currents is obtained. 
For each segment, there is a corresponding equation and for 
the whole grounding grid, we will obtain N equations. By 
solving the group of equations, the leakage currents on each 
segment are obtained. From the leakage currents, the 
grounding resistance, the touch voltage and the step voltage 
can be determined. 

APPLICATION

Fig. 3. The grounding grid of the 500kV substation. 

By using the method, the effect on the performance of a 
real 500kV grounding grid made of steel by a coaxial 
shielded cable which is grounded at its two end is analyzed. 
The grid is shown in Fig. 3. There are three corresponding 
coaxial shielded cables to transmit the signal between the 
controlling building and the three relay cells. The paper 
mainly focuses on the cable between the controlling building 
A and the relay cell C, neglects the cables from A to B and 
from A to D. All the results are obtained at 50Hz. 

If the cable does not exist, the grounding resistance is  
0.2688 , and if the cable exists, the resistance is  0.2672 .
The current flowing through the cable’s sheath is 1242A.

TABLE I. VOLTAGE DIFFERENCE NEAR THE CONTROLLING BUILDING A.

Surface 
Potential  (V) 

Touch
Voltage (V) 

Step 
Voltage (V) 

Without Cable 6013 370.3 4.355 
With Cable 6024 311.7 4.726 

TABLE II. VOLTAGE DIFFERENCE NEAR THE RELAY CELL C.

Surface 
Potential  (V) 

Touch
Voltage (V) 

Step 
Voltage (V) 

Without Cable 6108 213.0 8.438 
With Cable 6102 170.0 8.929 

(a) Without cable                                    (b) With cable 
Fig. 4. The distribution of touch voltage in the frame of broken line in Fig.3. 

Thus, except the touch voltage is changed apparently near 
the region where the cable is connected to the grid, there is 
almost no difference between with cable and without cable. 

CONCLUSION

In this paper, a method coupling electromagnetic field 
with circuit equations is presented to analyze the grounding 
grid with cables connected to it in frequency domain. The 
effect on a 500kV grounding grid by a coaxial shielded cable 
which is grounded at its two ends is analyzed. 

REFERENCES

[1] Jiansheng Yuan, Huina Yang, Liping. Zhang, Xiang Cui, Xishan Ma, 
"Simulation of Substation Grounding Grids with Unequal-Potential," 
IEEE Trans. on Magn., Vol. 36, No. 4, pp. 1468-1471, July 2000. 

[2] Leonid D. Grcev, "Computer Analysis of Transient Voltages in Large 
Grounding Systems," IEEE Transaction on Power Delivery, Vol.11, No.2, 
pp. 815-823, April 1996. 

[3] Bo Zhang, ZhiBin Zhao, Xiang Cui, and Lin Li, "Diagnosis of Breaks in 
Substation’s Grounding Grid by Using Electromagnetic Method," IEEE 
Trans. on Magn., Vol. 38, No. 2, pp. 473-476, March 2002. 

99Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Multigrid Algorithms for the Fast Calculation of
Space-Charge Effects in Accelerator Design
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Abstract— Numerical prediction of charged particle dynamics in accel-
erators is essential for the design and understanding of these machines.
Methods to calculate the self-fields of the bunch, the so-called space-charge
forces, become increasingly important as the demand for high-quality
bunches increases.

We report on our development of a new 3D space-charge routine in the
General Particle Tracer (GPT) code. It scales linearly with the number
of particles in terms of CPU time, allowing over a million particles to be
tracked on a normal PC. The model is based on a non-equidistant multi-
grid Poisson solver that has been constructed to solve the electrostatic fields
in the rest frame of the bunch.

Numerical investigations have been performed with a wide range of
cylindrically shaped bunches (from very long to very short) occuring in
recent applications. The results show small errors for the computed elec-
tric field and a stable multigrid performance for an appropriate choice of
the multigrid components.

INTRODUCTION

Nowadays, particle accelerators play an important role for
scientific research as well as for medical and industrial appli-
cations. Demanding applications such as high-energy linear
colliders and self-amplified spontaneous emission free electron
lasers (SASE-FELs) require very high quality electron bunches,
where any anomaly severely degrades the final performance.

The calculation of space-charge forces is an important part of
the simulation of the behaviour of charged particles. Depending
on charge density and energy, a direct point-to-point model can
not be used to calculate space-charge forces because of gran-
ularity problems and the inherent O � N2 � scaling between the
number of sample particles and CPU time [1]. Widely used
methods to avoid these problems are the restriction to 2D mod-
els which are valid with certain symmetry assumptions, the ap-
plication of the FFT method or the parallelization of large prob-
lems derived from 3D models.

In this paper we present a 3D space-charge model based on a
multigrid algorithm adapted for non-equidistant meshes. This
method is appropriate for a variety of applications and allows
a million particles to be tracked on a normal PC. It has been
implemented in the widely used tracking code GPT (General
Particle Tracer) [2] which calculates the trajectories of a large
number of sample particles through the combined external and

Gisela Pöplau was supported by DESY, Hamburg.

self-induced fields generated by the charged particles.
The numerical investigations present tests with cylindrically

shaped electron bunches with different aspect ratios varying
from ’cigar’ to ’pancake’ shape.

3D SPACE-CHARGE CALCULATION BASED ON A MULTIGRID POISSON
SOLVER

The space-charge calculations are performed within the
tracking procedure. The trajectories of the particles are de-
scribed by the relativistic equations of motion which are solved
with a 5th order Runge–Kutta scheme in the tracking code
GPT [1]. In each time step of the numerical integration the
space-charge fields have to be taken into account. The space-
charge calculation is performed in the rest frame of the bunch
as follows:
1. Transformation of the particles from the laboratory frame to
the rest frame by Lorentz transformation.
2. Determination of a non-equidistant 3D Cartesian grid in cor-
respondence to the charge density of the bunch (see Figure 1).
3. Approximation of the charge at the grid points.
4. Calculation of the electrostatic potential at the grid points
via Poisson’s equation applying a geometric multigrid algo-
rithm adapted to non-equidistant meshes. The finite difference
scheme is used for the discretization of Poisson’s equation.
5. Derivation of the electric field in the rest frame and trilinear
interpolation of the field values to the particle positions.
6. Transformation of the field to the laboratory frame by
Lorentz transformation.

Fig. 1. Mesh line positions ((x � y)–plane) for a Gaussian charge density. The
vertical axis shows the total charge in each mesh box, where the height of
the top has been normalized in both plots.
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The efficiency and accuracy of the space-charge calculation
mainly depends on the determination of the 3D mesh and the
applied multigrid scheme to solve Poisson’s equation[5].

NUMERICAL INVESTIGATIONS

Charged particle bunches ranging from very short to very
long play an important role in accelerator design. The aspect
ratio A for cylindrically shaped bunches is defined as A � R

�
γL

where R denotes the radius of the cylinder, L the length and γ the
Lorentz factor by which the bunch will be stretched in the trans-
formation from the laboratory frame to the rest frame. The par-
ticles in the cylinder are assumed to have a uniform distribution.
The performance of the 3D space-charge routine was tested
within a range of aspect ratios A � 10k with k � � 2 � � 1 � � � � � 2
which covers many real life applications.

The first numerical investigation concerns the error caused
by the 3D space-charge model. Here the computed electric
fields of various uniformly charged hard-edged cylindrically
symmetric bunches have been compared to the analytical ex-
pressions. This can be considered a worst-case scenario be-
cause the fields near the hard edges have singularities, but
they are typically not present in physical bunches with relative
smooth boundaries. Fig. 2 shows that except for the bunch with
A � 100 where nearly ten times as much particles are needed,
convergence reaches field errors in the range of a few percent
for a rather small number of particles .
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Fig. 2. Error of the electric field for electron bunches with cylindrical shape
of different aspect ratios A. The space charge calculations have been per-
formed on a n � n � n grid for all shapes, where n3 � number of particles.

The second numerical test concerns the performance of the
geometric multigrid algorithm constructed for non-equidistant
meshes shown in Fig. 1. It has been demonstrated in [4] that
the crucial part of a multigrid scheme on such meshes is the
coarsening strategy. In this paper we present the results of
three geometric multigrid algorithms. All schemes apply two
pre-smoothing and two post-smoothing steps with red-black
Gauss–Seidel relaxation (MG(2,2)). Half restriction has been
tested versus full restriction as grid transfer operator. Third, the
multigrid preconditioned conjugate gradient method has been

applied with two V-cycles in every CG-iteration step (MG-
PCG(2,2)(2)). To ensure convergence the components of this
multigrid scheme have to be modified so that the iteration oper-
ator is positive and symmetric (see [3]).

The performance of the multigrid algorithms has been tested
with the tracking of a pancake bunch with A � 2 moving in
free space. The particles of this bunch have been tracked over
a time of 100 ps which corresponds to 37 time steps in the
simulation. Fig. 3 shows that the multigrid scheme with full
restriction and the multigrid preconditioned CG-method have
the most stable performance while the multigrid algorithm with
half restriction is very sensitive to certain meshes which yield
no optimal coarsening.
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Fig. 3. Number of multigrid iterations for several multigrid schemes (MG:
multigrid, MG–PCG: multigrid preconditioned CG). The calculations have
been performed with a pancake bunch of 10,000 particles, where the par-
ticles have a uniform distribution. The multigrid iteration has been per-
formed on a 33 � 33 � 33 mesh to a relative residual of less than 10 � 13 in
the maximum norm.

CONCLUSIONS

A new 3D space-charge routine implemented in the GPT
code has been described in this paper. The new method al-
lowing 3D simulations with a large number of particles on a
common PC is based on a multigrid Poisson solver adapted to
non-equidistant meshes for the calculation of the electrostatic
potential in the rest frame. Numerical results of the 3D routine
show good convergence and a stable multigrid performance.

Further improvement of the 3D space-charge routine is fore-
seen regarding adaptive meshing and adaptive choice of sample
particles.
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Abstract - The electric field component along the direction of a MV 
line near a concrete pole has been studied, at first with a simplified 
analytical model, then with a 3D finite element commercial code and 
finally with the charge simulation method. The results are in good 
agreement and have been validated experimentally. A possible application 
is outlined.

INTRODUCTION

The evaluation of the electric field at power frequency 
generated in close proximity of a MV transmission line is of 
interest both for environmental consideration and for possible 
technical applications in detecting line fault conditions.

In this work, the region near a concrete pole of a MV line 
not too close to the top has been investigated. At first a 
simplified geometry has been used with a single conductor, and 
then the three-phase MV line has been considered. In both 
configurations, simple analytical models have been proposed 
for a preliminary intuitive comprehension and then numerical 
analyses have been performed. The results have been 
experimentally validated.

PRELIMINARY ANALYTICAL CONSIDERATIONS

A. Single conductor model

The analyzed simplified geometry consists of a pole with 
height a and a single conductor at a distance b over the 
concrete pole (Fig. 1).

A linear charge distribution with total negative charge –q1

has been assumed along the pole (as suggested by a 
preliminary Lehmann's analysis) together with a concentrated 
charge at the top of the pole. The ground has been considered 
resorting to the image charge principle. The charge distribution 
on the conductor has not been considered in estimating the 
electric field component Ex in the x-z plane (Fig. 1) near the 
pole because, due to the symmetry, the electric field caused by 
the charge on the conductor and its charge image only has a 
vertical component on the pole. The same simplifying 
assumption holds for the concentrated charge at the top of the 
pole and its image charge, in the region near the concrete pole 
not too close to the top.

The assumed charge density with linear distribution along 
the concrete pole allows to compute, in the region near the 
pole, i.e. for small values of x, the voltage and therefore the 
electric field component Ex in the x-z plane. It results:

This work was supported by C.R.E.I. Ven - Consorzio di Ricerca in 
Elettronica Industriale – Veneto, Padova, Italy and S.G.E. Società Generale di 
Elettronica S.r.l., Padova, Italy.
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where, according to the quasi-static condition, q1 has been
expressed as product of the voltage e(t) and the capacitance C
between conductor and pole.
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Fig. 1. Pole with height a and single conductor at a distance b: lateral (a) and 
frontal view (b).

B. Three-phase model

The configuration of a three-phase overhead line with a 
pole top design has been studied. In a simple model, an 
expression of the electric field component Ex in the x-z plane 
near the concrete pole and not too close to the top can be 
derived assuming that (1) holds for each of the three phases 
and with equal capacitance between each phase and the pole. It 
results:

[ ] )(3)()()( 02
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3212
0

te
xa

zC
tetete

xa

zC
Ex =++ , (2)

where e1(t), e2(t), and e3(t), are the three phase voltages and 
e0(t) is the voltage zero-sequence component.

NUMERICAL ANALYSIS

A. 3D finite element evaluation

Both the configurations have been studied with a 
Maxwell® 3D finite element commercial code.

In the first case, the pole and the conductor have been taken 
as equipotential conducting cylinders, with diameter equals to 
0.08 m and 0.3 m respectively; a has been chosen equal to 
10 m, b equal to 0.85 m and the ground has been taken 
60x10 m2. The 0.3 m value has been chosen in order to obtain a 
better code convergence. With a mesh of about 105 elements, 
the computed values near the concrete pole, not too close to the 
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top, present almost linear dependence with z and inverse with
x, in agreement with (1). A C value of about 17 pF has also 
been derived.

The three-phase overhead line has been studied by 
completing the previous single conductor configuration with 
two cylindrical lateral conductors with the same diameter as 
the central one, located at a distance b at each side of the top of 
the pole. The capacitances between the central phase and the 
pole and between each lateral phase and the pole result to differ 
of about 30%.

B. Charge simulation method

Both configurations have also been studied with a code 
based on the charge simulation method (CSM), that replaces 
the conductors and their surface charges with sets of charges 
inside equipotential contours [1-3].

In this study, the phase conductors were simulated by 
conducting cylinders, 0.01 m diameter, extending 30 m apart 
from the pole in order to avoid boundary effects: also, the pole 
has been represented by a cylindrical conductor.

A preliminary check on the accuracy of the computed 
equipotential surfaces was done in two different ways: on the 
potentials, finding an error generally lower than 2*10-4, and on 
the electric field, whose angle respect to the normal to the 
conductors was smaller than one degree.

As the shape of the pole conductive core is not known, a 
parametric analysis of the diameter of its simulating cylinder 
was also carried out. The field along the pole at a distance 
x = 0.15 m was computed for three different diameters: 0.1, 0.2 
and 0.3 m. Results differ no more than 15%, showing that, 
within these limits, no knowledge of the internal composition 
of the pole is required.

With a diameter of 0.2 m as reference, the distributions of 
charge density along the pole were computed both in the single 
conductor model (1 kV applied) and in the three-phase 
configuration (1 kV applied to one phase and 0 V applied to the 
other ones), reported in Fig. 2. The corresponding charge 
density on the phase conductors was also computed.

Results confirm the simple assumption of a linear 
distribution of charge density along the pole used in the 
analytical formulation, within 10% up to z = 6 m.
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Fig. 2. Charge density distribution along the pole. Three-phase: (a) 1 kV 
applied to the central phase, 0 V on the others; (b) 1 kV applied to one lateral 

phase and 0 V on the others. Single conductor: (c) 1 kV applied.

Then the capacitances between each phase conductor and 
the pole have been calculated. Values of C0 = 20 pF in the 
single phase model and, respectively, of C1 = C3 = 16 pF 
(lateral phase - pole) and C2 = 11 pF (central phase - pole) in
the three-phase configuration were found.

Finally, the distribution of Ex at 1 kV on the central phase 

and –0.5 kV on the lateral phases was computed as a function 
of x and z. An example of the results is shown in Fig. 3, where 
for comparison, the data obtained from the finite element 
commercial code are also reported.
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Fig. 3. Electric field component Ex at x=0.1 m versus z. Maxwell® 3D code 
data (squares) and charge simulation method data (circles) are reported.

CONCLUSIONS

Taking into account the difference C = C1 - C2 and using 
(1) for each of the three phases, it results:

[ ] ,)()(3 2012
0

tCeteC
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z
Ex = (3)

showing the same simple dependence on z and x as in (1) and 
allowing an easy evaluation of the variations of Ex at the 
occurring of e0(t) on the line.

The model has been experimentally validated on a MV line 
with a floating electric field measurement equipment 
developed in accordance with IEC 833 Standard [4].

The very simple calculation provided by (3) gives 
satisfactory agreement with the much more complex computer 
solutions, allowing its use in low cost detection systems of 
zero-sequence voltage which are under development.
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Abstract—The purpose of this work is to produce physical finite element
models of silicon semiconductor diodes. A p-n junction device is described
here and the finite element calculated potential and charge solutions are
used to extract the capacitance parameter in reverse bias.

I. INTRODUCTION

The aim of this work is to use a full numerical semiconductor device
simulation to extract a key parameter from a silicon diode, that of the
capacitance of the device when in reverse bias. The numerical solu-
tion takes the boundary conditions (current and voltage) and internal
conditions (doping) and uses them in a finite element formulation to
generate the values of internal electric field and carrier concentration.
The capacitance can then be calculated from the carrier concentration.

II. THE PHYSICAL MODEL

A. Sub-domain Equations

The two domains (the anode and cathode) are described by the
same set of equations, only the concentrations of donor atoms change.
The equations describe how the charge carriers distribute themselves
through the material and also how they flow when a steady state has
been achieved. This gives the current and the charge distribution. To
determine the current flow the Boltzmann transport equation is used as
a starting point and results in equations (1) and (2)

−→Jn ∼= q.n.µn.
−→E +q.Dn.� .n (1)

−→Jp ∼= q.p.µp.
−→E −q.Dp.� .p (2)

where −→Jn and −→Jp are the final device current densities for electrons
and holes respectively, q is the electron charge, n and p are the electron
and hole concentrations, µn,p are their mobilities, −→E is the electric field
and Dn,p are the diffusion mobilities.

Equations (1) and (2) must be solved in conjunction with the quasi-
static Maxwell’s equations. For an actively charged region Maxwell’s
equations combine to produce Poisson’s equation and the continuity
equations for electrons and holes. These governing equations are writ-
ten as follows:

�(�.ψ) =
q
ε
(n− p−Qd) (3)

�−→Jn = q.R (4)

�−→Jp = q.R (5)

where ψ represents the electrostatic potential, ε is the permittivity,
Qd is the fixed charge on the dopant atoms and R is the recombination
rate. Equations (1) to (5) are coupled through −→E , −→Jn,p, n and p

Shockley, Read and Hall introduce an equation (6) which describes
the recombination in terms of n, p, the intrinsic carrier concentration
ni, the carrier lifetimes τn,p, trap energy level parameters n1and p1.

The trap energy levels are set such that when the trap energy level is in
the middle of the band gap then n1 and p1 equal ni.

RSRH =
n.p−n2

i

τp.(n+n1)+ τn.(p+ p1)
(6)

B. Boundaries and Initial Conditions

For boundaries with an insulator, it is assumed that no electrostatic
field or current flows into the insulator. This assumptions give the
Neumann boundary conditions in equations (7), (8) and (9).

−→n .E = 0 (7)

−→n .Jn = 0 (8)

−→n .Jp = 0 (9)

The contacts are the final type of boundary and are more complex.
The assumptions are made that the holes and electrons recombine with
infinite velocity, implying that the mass action law (10) is valid, and
the contact voltages are fixed. It is also assumed that space charge
vanishes at the contact boundaries and this gives equation (11).

n2
i = np (10)

n− p−N = 0 (11)

where ni is the intrinsic carrier concentration and N is the doping
concentration at the contact.

The finite element model depends on the voltage control of the
diode, this means that at the contacts the boundary condition is that
described by equation (12).

ψ(t)−ψb −ψD(t) = 0 (12)

where ψ(t) is the electrostatic potential at the contact boundary, ψb
is the built in potential, and ψD(t) is the applied contact voltage. The
built in potential is the potential which results from the diffusion of
carriers away from their donor atoms. Although ψ and ψD are de-
noted as time dependent, the finite element model solves the system
for a specific contact voltage, not a time varying voltage, therefore the
model will not depend on time.

Solving and rearranging equations (10), (11) and (12) and the built-
in potential as defined in [1] for ψ, n and p gives equations (13), (14)
and (15).

ψ = ψD +
kT
q

ln

 N
2 +

√( N
2

)2 +n2
i

ni

 (13)

n =
N
2

+

√(
N
2

)2

+n2
i (14)

p = −N
2

+

√(
N
2

)2

+n2
i (15)
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The carrier concentrations for the first iteration of the solution solv-
ing process are the doping levels. The assumption is that the substrate
is diffusion doped from both sides and that the doping falls off from the
maximum of 1017cm−1 exponentially towards the junction[2]. This
should give a reasonable approximation to the actual doping.

III. THE FINITE ELEMENT SOLUTION

A. Scaling

When solving a semiconductor problem the main difficulty is that
of scaling, the carrier concentrations can vary by 6 or 7 orders of mag-
nitude in a very small distance. Unfortunately this is exacerbated by
trying to simulate a diode in reverse bias, where the depletion region
has virtually no free carriers and the regions near the contacts have
very high concentrations of carriers. To solve this problem scaling
equations have to be set up. For the carrier concentrations, the geome-
try, the carrier mobilities and the diffusivities the maximum values are
used as scaling constants, to give ranges of 0 to 1. For the potential,
the scaling constant is given by Boltzmann’s constant times 300 Kelvin
divided by the electron charge.

B. Solving

The sub domain and boundary equations are solved using the finite
element method in two dimensions. Firstly a mesh is formed across
the geometry, this mesh is then refined around the junction since this
is where the carrier concentrations will vary most rapidly. The equa-
tions are then converted into a weak form which is a form consisting
of functionals which describe the sub domain and boundary condi-
tions and include test functions. This weak form can then be changed
directly into a matrix equation which can be solved for the solution
vector, which describes the spatial distribution of the carrier concen-
trations and potential [2]. The software used to model and solve this
system of equations was FEMLAB by COMSOL Inc. The charge con-
centrations after calculation are shown in figure (1).

IV. CAPACITANCE EXTRACTION

The obvious starting point when extracting capacitance from a
model is the definition of capacitance itself (16). This differential ver-
sion of the capacitance definition is used for calculating depletion re-
gion capacitance [3].

C =
dQ
dV

(16)

Since the amounts of free charge on either side of the depletion re-
gion and the contact voltages are a fundamental part of the model, no
further mathematical development is required.

The calculation begins by taking the integral of the free charge on
either side of the depletion region at each voltage. The differences are
then calculated between each voltage and resulting charge. Placing the
charge and voltage differences in equation (16) gives two capacitances
for each voltage, one for the anode and one for the cathode.

V. CONCLUSIONS

Starting from a knowledge of the geometry and doping levels the
finite element method has been used to solve the carrier concentra-
tion distribution and electric potential in a silicon diode structure. The
model was based on the solution of the Boltzmann transport equation
together with the quasi-static form of Maxwell’s equations. The junc-
tion was reverse biased and a varactor capacitance was extracted. The
method used the charge - voltage definition of capacitance with data
derived directly from the numerical solution. In the full paper two
other methods of approximation will be included together with exper-
imental results.

(a) 0V

(b) -1.4V

Fig. 1. Charge concentrations at a) 0V and b) -1.4V
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Abstract—In the extraction and simulation of IC chips using 
electromagnetic field solvers, one of the difficulties is the 
modeling of the multilayered dielectric structures. The 
consideration of these thin layers in the field solvers increases 
dramatically the memory and the computation time. This paper 
presents a numerical homogenization strategy of multilayered 
dielectric media that allows removing the dielectric layers from 
the field solver models. A technique that transforms the 
homogenized anisotropic material to an isotropic material is 
also developed. This homogenization strategy has been applied 
in both the finite element method and a fast multipole 
expansion accelerated boundary element method. A case of 3D 
critical net capacitance extraction of a real digital chip is given 
as an example. 

Index Terms—VLSI circuit parameter extraction, 
homogenization of multilayered media. 

I. INTRODUCTION 

n the modern design of IC chips, the shrink of circuit 
elements and the increase of operating frequency make the 

accurate determination of parasitic circuit parameters more 
and more critical in the analysis of the performance and the 
signal integrity of integrated circuits. Traditional extraction 
tools based on the pattern match techniques provide only 
limited accuracy in many cases, mainly because the 
important 3D effects cannot be accurately considered in 
such patterns. For that reason, electromagnetic field solvers 
play now a days a more and more important role in the 
extraction and simulation of IC chips. One of the 
applications consists in the accurate critical net circuit 
parameter extraction in the submicron IC chip design. In the 
IC application, due to the large scale of the problem, the 
computation speed is a crucial requirement. However, since 
the field solvers solve the partial differential equation or the 
integral equation with the numerical discretization, they are 
memory and time consuming. This limits their practical use 
in the IC extraction and simulation. The reduction of the 
memory and the acceleration of speed are very challenging 
in the development of field solvers, as the speed and 
accuracy are two (balanced) requirements in the IC area. 

One of the difficulties encountered in the IC modeling is 
the multilayered dielectrics. Due to the field refraction and 
reflection on the interfaces of different materials, correct 
modeling using the field solvers requires meshing these 
layers (the finite difference method, the finite element 
method) or their interfaces (the boundary element method). 
This increases dramatically the memory and the computation 

time. In addition, the mesh quality of thin dielectric layers 
has a big impact on the accuracy of results. This increases 
the meshing difficulty. Since in the circuit extraction and 
simulation, we are mostly interested in the global 
phenomena rather than local filed distribution, the 
multilayered media can be homogenized without affecting 
the global behaviors of the circuit. An appropriate 
homogenization technique can significantly improve the 
performance of the field solvers. 

In the case of planar layered media, there exists an 
analytical formula to determine the equivalent homogenized 
material. This formula is derived with the assumption of 
planar fields and cannot be directly used to our case due to 
the small size of interconnects which involves important 
corner singularity. 

Another method concerns the use of dyadic Green’s 
function in the layered media. It is widely used in the 
method of moment or the boundary element method to 
model the micro-strips (transmission lines) and the RF 
fields. It is also adapted to the static field case to extract 
parasitic circuit parameters [1]. The layered Green’s 
function is derived in the spectral domain. The 
transformation of the layered Green’s function from the 
spectral domain to the spatial domain requires the so called 
Sommerfeld integration which is very time consuming. In 
addition, the spatial layered Green’s function is usually 
stored in a data file in a discrete form. This requires 
additional memory and the further interpolation that may 
introduce additional errors. Also, the layered Green’s 
function cannot be applied to the field solvers which solve 
the local partial differential equation such as the finite 
difference or the finite element method. 

In this paper, we present a numerical homogenization 
strategy to homogenize the multilayered media. The strategy 
is based on the homogenization for different metal layers 
using a numerical training technique, and the transformation 
of so obtained anisotropic media to the isotropic media with 
appropriate geometry transformation. The numerical training 
is performed with few 2D field calculations. The equivalent 
homogenized constant can be easily determined. This 
technique has been applied in both the finite element method 
and the FME (fast multipole expansion) boundary element 
method, and successfully used to the critical net extraction. 

II. HOMOGENIZATION STRATEGY

A typical IC chip process is composed of layered metal 
lines embedded in planar layered dielectric media (Fig.1). 
Each metal layer is surrounded by several dielectrics layers 
of very different dielectric constants and thicknesses. 

3D Capacitance Extraction of IC Interconnects 
Using Field Solvers and Homogenization Technique 
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With the assumption of planar fields, a structure of n 
planar layer dielectrics with the dielectric constant �i and the 
thickness di, can be homogenized in the horizontal (xy) and 
the vertical (z) directions, respectively, by the following 
analytical expressions: 
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As mentioned previously, above analytical expressions 
are not valid for the case of small size interconnects because 
of important corner singularity. Numerical determination of 
corner effect is hence necessary. 

Fig.1. Typical structure of IC chip process. 

On the other hand, in the IC process, the dielectric media 
surrounding the metal lines may be different from metal 
layer to metal layer, especially for the lower and upper metal 
layers. Homogenizations of the whole region at once 
averages the dielectric constants of all metal layers and 
ignore the local effect for different metal levels. That may 
introduce important errors. 

Taking all these points account, the following numerical 
homogenization strategy is proposed. 

1. Homogenization of dielectric layers for each metal 
layer and inter-metal layer using the expressions (1) and (2), 
together with a numerical correction. The numerical 
correction is performed using a 2D field solver training on 
few simple structures. This step gives an equivalent 
anisotropic dielectric constant for each metal layer and inter-
metal layer. 

2. Replacing the anisotropic constants of each metal layer 
and inter-metal layer by equivalent isotropic constants using 
the formula: zxy��� � . The geometry of the layered 
structure is adequately transformed based on the energy 
balance before and after the transformation. 

3. Homogenization of layered isotropic dielectrics 
resulting from the step 2 on the whole process. An 
equivalent anisotropic dielectric material is obtained for the 
whole process. 

4. Replacing the anisotropic constants of the whole 
process by equivalent isotropic constant with corresponding 
geometrical transformation.  

5. Modifying the thickness of metal layers and the 
distance of inter-metal layers by appropriate constants to 
take into account the local effect for different metal layers. 

It can be noted that, the equivalent homogenized media 
obtained after each step can be applied to field solvers such 
as the finite element method with the decreasing meshing 
difficulty. Whereas for the method which solves global 
integral equation such as the boundary element method, only 
the isotropic constant can be used. 

Finally, note that the homogenization is performed only 
one for a given IC process and can be used for the extraction 
and simulation the entire circuits. 

III. EXAMPLE OF A CRITICAL NET EXTRACTION

Fig. 2 shows a interconnect structure around a given 
(critical) net of a digital IC chip. The critical net is 
highlighted in dark. Note that in this process, there are 6 
layers of metal nets embedded in about 30 layers of 
dielectric media. For the reason of clarity, the layered media 
are not shown. The problem consists of calculating the self 
capacitance of the critical net and the coupling capacitances 
with its neighbors. 

Fig.2. Interconnect structure around a critical net of an IC chip. 

The problem is solved using both the finite element 
method using the dual formulations [2] and a fast multipole 
expansion accelerated boundary element method [3]. The 
homogenized isotropic dielectric constant is obtained by the 
previously described strategy. The self capacitances of the 
critical net given by the FEM and BEM are respectively 
7.35fF, 7.29fF, which are to be compared to 7.30fF obtained 
on the original structure by a field solver based on the 
stochastic approach [4] with an uncertainty of 0.4% 
(standard deviation).  

Details and more results will be reported in the full paper. 
In order to promote the practical use of the field solver in 

the IC area, we intend to propose this example as a 
benchmarking in the COMPUMAG Society. 
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Abstract – An evolutionary approach to worst-case analysis of static field 
problems ruled by Poisson equation, over suitable spatial domains and 
with appropriate boundary conditions, is presented. It ensures a better 
estimation of the true worst case especially if parameters are affected by 
large uncertainties and whenever the performance function is non-linear 
or, even worse, non-monotonical with respect to parameters. 

I. INTRODUCTION

Nowadays, in systems’ design the analysis of performances in 
presence of parameters’ variations is rising to a central role. 
In fact, on one side it is important to evaluate the maximum 
tolerances of parameters ensuring that the customer 
specifications are still not violated. On the other side, the 
analysis of the effects of the variation of input design 
parameters in specific intervals or ranges allows to test the 
performance of different design solutions and to carry out 
safety or reliability analysis. This paper is focused on the 
Worst-Case Analysis (WCA) of static field problems ruled by 
Poisson equation over suitable spatial domains with 
appropriate boundary conditions. WCA assumes that the 
variations of parameters within their own ranges are 
uncorrelated and uniformly distributed. The analysis is 
usually performed by running a sufficiently high number of 
Monte Carlo (MC) trials, with a considerable amount of 
computation time. In this paper, an efficient Evolutionary 
Algorithm (EA) – based approach to WCA is presented. Its 
performances are tested by means of a pilot example outlined 
in Section II. 

II. FORMULATION OF THE PILOT EXAMPLE

As test problem, the 2-D L-shaped domain , with boundary 
, filled with a isotropic, homogeneous insulating material 

of permittivity  depicted in fig.1 has been considered [1]. 

Figure 1: L-shaped domain  adopted for simulations 

The Poisson problem (1) in is: 

2

1

2

yx,yx,gyx,V
yx,yx,fyx,V

yx,yx,yx,V

n

(1)

Dirichlet boundary conditions have been assigned on 
1=edge1 edge2 edge3 edge5, while Neumann boundary 

conditions have been assigned on 2=edge4 edges6. In the 
sequel, the following ranges for the Dirichlet boundary 
conditions are accounted for: 

edge6edge4yx,0yx,
edge5yx,V]110,90[yx,f

edge3edge2edge1yx,V]11,9[yx,f

g

             (2) 

The potential distribution V(x,y) is calculated by FEA: a 
mesh including N=150 nodes has been used. 
The WCA puts in the determination of the range of values 
assumed by V(x,y) if the permittivity , the volume charge 
density and the Dirichlet boundary conditions span 
variation intervals. By solving WCA problems using 
statistical approaches, such as MC, results into an 
underestimation of the TWC. The main MC limit is in the big 
amount of trials required to get a “good solution”, namely 
close to the True Worst Case (TWC). If the potential 
distribution V(x,y) is an implicit function of parameters, its 
non-linearity and/or its non-monotonicity within the 
parameters’ ranges of variation is not easily foreseen. 
Consequently, it becomes very difficult to catch by MC 
analysis the combination of parameters corresponding to 
maxima and minima of V. Moreover, it is not easy to foresee 
the minimum number of MC trials needed to obtain a quite 
good estimation of the TWC. Nevertheless, if the set of 
parameters to be tested is not chosen purely randomly, as in 
the MC analysis, but trying to select the combinations which 
likely give the solutions closest to the TWC, the analysis 
should be more fruitful. To this aim, an index expressing the 
contribution given to the worst-case by the solution obtained 
taking each combination of parameters can be useful to drive 
a global optimization method. Evolutionary Algorithms (EA) 
can be of great help in performing this task; in Section III the 
EA used to perform the WCA is outlined. 

III. THE EVOLUTIONARY ALGORITHM-BASED WCA 
The EA works on a population of real-coded individuals 
represented by a vector of three real values [ , (x,y),f(x,y)]. 
Each set of parameters, or individual, corresponds to a 
potential distribution V(x,y) in the N points of the chosen 
mesh. Consequently, a Worst-Case Envelope (WCE) can be 
built up for each EA generation, collecting the potential maps 
of all the individuals of the population and picking the 
maximum and the minimum values in each node. Referring to 
the evaluation of the upper bound of the worst case, the 
fitness associated to each individual is given by the sum of 
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the improvements that the solution exhibits in those nodes 
where it overcomes the WCE obtained up to the current 
generation. Afterwards, the WCE is updated according to the 
current population and then the population is evolved and the 
offspring takes the place of the parents. Note that the current 
WCE is not given by an only set of parameters: it is a 
collection of the best parts of all the solutions explored during 
the evolution. The same operation has to be repeated for the 
lower bound, thus getting the whole estimation of the TWC.  
The algorithm has been implemented in MATLAB®, adopting 
standard EA operators (selection, crossover and mutation). In 
the next section numerical results are presented and 
discussed.

IV RESULTS AND DISCUSSION

Two test cases taken from [1] have been considered to show 
the reliability of the proposed EA-based technique. 
Firstly, the case taken from [1], exhibiting the variations (2) 
and (3) has been considered: 

00

3
128-98-

min

3
128-98-8-

max

10,2

yx,
m
C)y104-x10(-8yx,

yx,
m
C)y104-x108-01(2yx,

       (3) 

It is worth noting that, even if the constitutive relation in (3) 
is linear, the electric potential dependence on parameters is 
non-linear. Nevertheless, this case has been chosen since the 
exact solution has been evaluated in [1], so that the reference 
solution is just available. Simulation results of the WCA are 
reported in fig.2, where the potential values are plotted versus 
mesh node numbers. The EA solution obtained by evolving a 
population of 80 individuals over 200 generations (16000 
potential map evaluations for the upper bound and the same 
number for the lower bound) is almost coincident with the 
exact TWC [1] and it is sensibly larger than the 
corresponding MC solution obtained with 32000 trials, as 
evident from fig.3. 
The second test case considered refers to a non-linear 
problem in which the dielectric permittivity depends on the 
electric field E by means of the function depicted in fig.4. 
Summarizing: 

)(]1,0[2
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3
128-98-

min

3
128-98-8-

max

Enl

  (4) 

Discrepancies between MC (6·104 trials) and EA (population 
=100, generations=300) for the upper and lower bounds are 
reported in fig.5. In this involved case, neither vertex analysis 
nor MC gives a good estimation of the TWC, while the EA 
greatly improves the MC result within the same computation 
time. 

V. CONCLUSIONS

In this paper, the worst-case tolerance analysis of static field 
problems ruled by Poisson equation, over suitable spatial 

domains and with appropriate boundary conditions, is 
afforded by means of an evolutionary algorithm. Results are 
encouraging in terms of computation time and accuracy if 
compared with those ones obtained by classical Monte Carlo 
analysis. 
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Figure 3. Potential discrepancy MC vs EA on upper bound and lower bound. 
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Electrostatic Imaging Via Conformal Mapping
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Abstract- We present the solution of an inverse bound-

ary value problem for harmonic functions arising in

electrostatic imaging through conformal mapping tech-

niques. The numerical method consists of two parts.

In a first step, by successive approximations a nonlin-

ear equation is solved to determine the boundary val-

ues of a holomorphic function on the outer boundary

circle of an annulus. Then in a second step an ill-posed

Cauchy problem is solved to determine the holomor-

phic function in the annulus. We establish a conver-

gence result for the iteration procedure and through

numerical examples we illustrate the feasibility of the

method.

I. DEFINITION OF PROBLEM AND ITS SOLUTION

The modelling of electrostatic, magnetostatic, or ther-
mal imaging methods in non-destructive testing and eval-
uation leads to inverse boundary value problems for the
Laplace equation. In principle, in these applications an
unknown inclusion or crack within a conducting medium
is assessed from overdetermined measurements on the ac-
cessible part of the boundary of the medium. In this pa-
per, as a model case we consider the inverse problem to
determine the shape of a perfectly conducting inclusion or
a perfectly conducting crack within a two-dimensional ho-
mogeneous conducting medium in the electrostatic case.
To this aim a second perfectly conducting test cylinder
with boundary curve Γ1 is located in the same medium.
Then one impose a voltage pattern f at a number of elec-
trodes attached to the boundary Γ1 and measure the re-
sulting currents through electrodes. The inverse problem
is then to reconstruct the boundary of the unknown body,
say Γ0, through the given voltage and current data.

In the region between the curves Γ0 and Γ1, say D, the
potential distribution u satisfies the Laplace equation

∆u = 0 in D (1)

with boundary condition

u = 0 on Γ0, u = f on Γ1. (2)

The inverse problem we are concerned with is: Given
the Dirichlet data f on Γ1, i.e., an imposed voltage on the

accessible outer boundary Γ1 of the conducting medium,
and the (measured) Neumann data

g :=
∂u

∂ν
on Γ1, (3)

i.e., the resulting currents on Γ1, determine the shape of
the boundary Γ0.

For a survey of some of the various methods that have
been developed and used for solving inverse boundary
value problems for the Laplace equation we refer to [1-
3]. Our approach is based on the conformal mapping of
the domain D onto an annulus B := {z ∈ C : ρ < |z| < 1}
with radius 0 < ρ < 1. The two components of the bound-
ary of B are denoted by C0 := {z ∈ C : |z| = ρ} and
C1 := {z ∈ C : |z| = 1}. By the conformal mapping
theorem there exists a uniquely determined radius ρ of
the annulus and a holomorphic function Ψ that maps B
bijectively onto D such that the boundaries C0 and C1

are mapped onto Γ0 and Γ1, respectively. The problem is
then reduced to the determination of the mapping func-
tion Ψ through the given voltage and current values on
the boundary Γ1. The numerical method that we devel-
oped to obtain the mapping function consists of two parts.
In a first step, by successive approximations a nonlinear
equation is solved to determine the boundary values of a
mapping function on the outer boundary C1 of the annu-
lus. During this steps one gets also the unknown radius
ρ of the inner circle of the annulus. Then by solving an
ill-posed Cauchy problem we determine the mapping func-
tion in the whole annulus through its Laurent expansion.
The coefficients of the resulting Laurent expansion are de-
termined by the measured data. By replacing the points
of the inner circle C0 one gets the unknown curve Γ0 with
simple calculations.

II. NUMERICAL RESULTS

In this section we present the results of some numerical
experiments in order to show the accuracy and effective-
ness of the reconstruction method described above. For
the sake of simplicity, the test boundary Γ1 is chosen as
the unit circle. The data which should be collected by real
measurements are calculated synthetically by solving the
direct problem defined by (1) and (2) through the double
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layer potential approach. To this aim the field u in D
is represented as the sum of appropriately modified dou-
ble layer potentials due to double layer densities on the
boundaries Γ0 and Γ1 [1] . The use of the jump relations
on the boundaries Γ0 and Γ1 yields a system of coupled
integral equations of the second kind for the related dou-
ble layer density functions, which can be solved through
the Nyström method [1]. In what follows, all the examples
are constructed for the boundary data

f(t) = 3 + 2 cos2 t, t ∈ [0, 2π]. (4)

Figure 3 shows the exact and reconstructed curves for
a kite-shape boundary given by the parametrization

Γ0 = {(0.2+0.3 cos t+0.15 cos 2t−0.15, 0.3 sin t) : t ∈ [0, 2π]}.
(5)

The inner radius of the annulus B for this case is ρ =
0.32504404.
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Figure 1: Exact and reconstructed curves for the bound-
ary data (4) and Γ0 given in (5)

Note that the reconstruction in the above example is
achieved with the data which contain only computational
errors in the solution of related direct problem. We also
check the sensitivity of the method to noise by adding %10
random noise to the Neumann data on Γ1. The exact and
reconstructed values of Γ0 with parametrization

Γ0 = {(0.2 + 0.3 cos t, 0.5 sin t) : t ∈ [0, 2π]}. (6)

are illustrated in Figure 2. The reconstruction is made for
15 iterations and ρ = 0.41092673. From these figures we
observe that the method yields quite satisfactory results.
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Figure 2: Exact curve of Γ0 given in (4.5) and its recon-
struction obtained by the Neumann data which contains
%10 random noise.
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Abstract— A new EEG source reconstruction method is presented. 
The method reduces the number of unknown quantities of the 
basic EEG equation by contracting the source region iteratively. 
The equation system turns from an underdetermined system to 
an overdetermined system step by step. At last the least square 
algorithm is used to get a unique solution. The simulation shows 
that a high-resolution result can be obtained by using the 
method proposed.

INTRODUCTION

The electroencephalogram (EEG) inverse problem is to 
estimate the information about the source inside the brain 
from the measured electric potential distribution on the 
surface of the scalp. The Low resolution electromagnetic 
tomography algorithm (LORETA) is a representative linear 
method for the source locating of EEG [1]. However, it can 
only acquire a low-resolution tomography. In order to get a 
high-resolution tomography, a new method to reconstruct the 
source tomography by contracting the source region 
iteratively is presented. The simulation and the experimental 
result prove the effectiveness of the method proposed. 

SOURCE REGION CONTRACTING METHOD

Similar with LORETA source estimation approach, the 
source region is divided into M grids. If the grids are 
dense enough, it can be assumed that the dipole source can 
only locate on each of the grid points. The dipole sources 
with different strengths and directions can be expressed as 
the linear combination of the unit dipoles along 

zyx ,, directions. N observed points are placed on the 

scalp outside the source region. Thus the relationship 
between the strength of the unit dipoles along the 

zyx ,, directions at each grid point and the potential at the 

observed points can be written as 
KJv �                                    (1) 

where TT
M

TT ],,,[ 21 jjjJ �� is a vector with M3  ranks 

comprised of the current densities j (3-vector) at M points 

with known locations inside the brain volume; 

T
Nvvv ],,,[ 11 ��v is the vector with N ranks comprised 

of measurements. MN 3�K is the transfer matrix with 

MN 3� ranks, that is, T
M ],,,,[ 321 kkkK �� , where ik

is the vector with N ranks. Generally speaking, the 
coefficients of K must be calculated by the numerical 
method, saying the finite element method, however, the 
analytical expression is available for the sphere model of 
brain [2]. The simultaneous equation group of (1) is an 
underdetermined system due to NM �3 , so a generalized 
weighted minimum-norm scheme is utilized to make the 
solution of the source distribution concentrate inside the 
brain as possible, that is,  

vKWWJ �

� )(                              (2) 

where W is a MM 33 � diagonal matrix with iiiW k� .

The superscript ‘+’ denotes the pseudo-inverse of matrix and 

the symbol � represents of the infinite norm of a vector. It 

is no doubt that only low-resolution tomography can be 
obtained in this way. However, such low-resolution 
tomography contains the useful information about the source 
location and strength to a certain extent. According to the 
result of physiological study, the source inside the brain is 
sparse, synchronized and highly concentrated. When one 
deals with a set of measured data with the consideration of 
above assumptions, a low-resolution tomography can be 
obtained by (2) at first. Based on this tomography, one can 
find some grid points that have less possibility to be the 
position of the dipoles. For example, these grid points, 
whose strength is less than 1% of the maximal strength of 
the current source distribution, are excluded from the source 
region. Thus, the source region concerned is contracted; as a 
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result, the number of elements of J is also reduced and the 
corresponding columns should be deleted from the matrix K .
By using the matrix K newly obtained, a new tomography 
could be acquired by (2) again. From this new tomography, 
some grid points will be excluded from source region again, 
which leads the rank of J to decrease further. By repeating 
the above approach, the simultaneous equation system will 
turn from an underdetermined system to a determined 
system step by step, or even to an overdetermined system, 
from which one can use the least square algorithm to locate 
the source position. In fact, in order to suppress the influence 
of noise in the experimental data, a truncated singular value 
decomposition technology (TSVD) is used as follows. 
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where ip and iq are the element of right and left singular 
vector of KW respectively. It should be noted that TSVD 
improves the numerical stability dramatically. 

NUMERCIAL EXAMPLES 

For a sphere model of the brain with the constant 
conductivity � , if two current dipoles with the unit strength 
are placed inside the brain, the numerical simulation results 
are shown in Fig.1, where Fig.1(a) is the tomography 
reconstructed by (2) directly, Fig.1(b) is the result by using 

the contracting source region method 3 times and Fig.1(c) is 
the final tomography after using the method 7 times. 
Obviously, it is a very satisfying result for EEG problem. In 
addition, we also verify the method proposed by using the 
experimental data. The brain is modeled by a lampshade 
filled with the NaCl liquor. The current dipole substituted by 
two sliver sphere with small gap is placed at the coordinate 
of )0,0,2( cm along the positive direction of x axis and 
measured potential points in XOY plane is marked by 

38,,2,1 � as shown in Fig.2 (a). The measured voltages are 

shown in Fig.2 (b) and Fig.2(c) is the final tomography. The 
details of experiment and the comparison between the 
method proposed and other existed methods are omitted in 
purpose because of the length restriction and will be reported 
in the extended paper.  

CONCLUSION

A source region contracting method is presented to 
reconstruct the EEG tomography. The further work is to 
verify the method with the real head model and data 
obtained from the hospital.  

REFERENCES 
[1] R. D. Pascual-Marqui et al. "Low resolution electromagnetic 

tomography: a new method for localizing electrical activity in the 
brain", Inter. Journal of Psychophysiology, vol.18, pp.49-55, 1994.  

[2] J. C. De Munck. “The potential distribution in a layered anisotropic 
spheroidal volume conductor.” Journal of applied physics, vol.64, 
pp.464-470, Feb., 1988. 

o x

y

z

38

dipolecurrent

liquorNaCl

lampshade

1
2

3

18
1920

21

36

37

0 10 20 30 40

-10

0

10

Vo
lta

ge
 (m

V)
 

measured points

)(a )(b )(c
Fig.2 Results of the source region contracting method with experimental data 
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Fig.1 Simulation of two sources inside the brain by source region contracting method  
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Abstract Based on the local searching algorithm, an efficient
method for estimating earth structure with any number of layers from
Wenner’s four-probe test data is presented. Green’s function is
approximated by an analytical expression by using complex image
method. Partial differentials’ values of the Green’s function to the earth
parameters, which were formerly obtained by solving integrals with
infinite limit by numerical integration, are obtained directly from the
approximating expression. Thus, with the method, not only a satisfied
result is obtained, but also the computation time is shortened.

INTRODUCTION

The earth structure is one of the necessary data for the
design of a safe grounding grid under the substation. Usually
the earth can be approximated by a horizontally stratified
multi-layer structure. Since the earth structure determines the
voltage distribution on the earth surface due to the current
injected into the earth, by using a set of Wenner’s four-probe
test data which is a set of voltage values measured on the
earth surface due to the injected current, the multi-layer earth 
structure can be estimated by solving an electric field inverse
problem.

Some methods for estimating two or three layers earth
structure have been developed [1]. But  two or three layers
structure is not always enough to reflect the practical situation.
In fact, the number of the layers can be any positive integer as
long as the combination of the number of layers and the
parameters of the layers is the best one to approximating the
Wenner’s test data. What's more, because the local searching
algorithm is used, in each iterative procedure, partial
differentials’ values of the Green’s function to the parameters
of each layer should be determined once again. However,
there exists an integral with infinite limit in the Green’s
function. To get the partial differentials’ values, some authors
used numerical integration that needs to find a large enough
value as the upper limit for the corresponding integral to
insure preciseness. Thus, the computation time was very long.

This paper presents an efficient method for estimating
earth structure with any number of layers from Wenner’s test
data. In each iterative procedure, the corresponding Green’s
function is approximated by an analytical expression by using
complex image method. A new method is presented to
determine the partial differentials’ values of the Green’s
function to the earth parameters directly from the
approximating expression. Thus, not only a satisfied result is
obtained, but also the computation time is shortened.

PRINCIPLES

Green’s function on the earth surface  When both the
current source and the observation point are located on the
surface of the earth with any number of layers, the Green’s
function of the electric protential can be expressed by:

2])()([ 0 0
1

1 drJfrIV ,                    (1) 
where I is the current injected into the earth, r is the distance
between the current source and the observation point, )(0 rJ

is the first kind of zero order Bessel’s function, 1)(1)(f ,
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hi (i=1, 2, . . . , N-1) and  (i=1, 2, . . . , N) are the thickness
and the resitivity of the ith layer respectively, and N is the
number of layers which can be any positive integer.

i

Wenner’s test and apparent resitivity  Wenner’s four-
probe test data are often used to estimate the earth srtucture as
shown in Fig.1. Details of the test can be seen in [1]. From
Wenner’s test data and supposing the data have M values, a
set of apparent resitivities varied with l is defined as:

IlVt
r 2 .                                        (2) 

With the same definition, another set of theoretical apparent
resitivities can be obtained from (1) as following : 

0 00
1

1 )]2()()[()2(2 dlJlJflc
r .       (3) 

Fig. 1. Wenner’s test method and the multi-layer earth structure
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Then, an object function is set up by the least square method:
M
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12121 ])([),,,,,,,( .   (4) 

Based on the local searching algorithm, the most satisfied
parameters hi and can be determined by minimizingi .

Complex image method It is difficult to get the value of
. In this paper, complex image method [2] is used to solve

this problem. That is, is approximated by a series of
complex exponentials by Prony's method [2]:
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where ai and bi are complex values. Then, by using Lipschitz
integration:
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0 0 )()( lcdlJe c ,                      (6) 
c
r  is approximated as:
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Partial differentials of the Green’s function Because the
local searching algorithm is used, in each iterative procedure,
partial differentials’ values of to the earth parameters
should be determined. In this paper, these values are obtained
directly from (7) with the help of (5), not from (3) by solving
corresponding integral with the help of numerical integration
after the partial differentials of  are obtained [1]. Form
(7), it can be seen that the partial differentials’ values of
can be determined easily if those of a

c
r

)(f
c
r

i and bi are determined.
From (5), the following equation can be obtained : 
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In (8), 
p

f )(
can be accurately deduced directly from the

expression of in (1), )(f 12121 ,,,,,,, NN hhh  are the
known quantities in each iterative procedure, and ai and bi can
also be obtained by Prony method, only ci, di and  are the
unknown variables. Because (5) approximates  along -
axis very well, for each earth parameter, we let be equal to
2n different values in (8) and get 2n linear equations with 2n
unknown variables: c

)(f

i and di (i=1, 2, . . . , n). By solving the
equations, ci and di can be obtained. Then, the partial
differentials’ values of  can be determined from (7).c

r

Determination of initial values According to the
computation experiences and the principles of the apparent
resistivities, the suitable number of the layers must be larger
than the total number of wave crests and troughs in the

distribution of the apparent resistivities along with different l,
must be larger than the wave crest or smaller than the

trough, and h
i

i must be no larger than the l of the wave crest or 
troughs. Based on the above analysis, a method to estimate
the suitable number and the initial parameters of the layers is 
developed. Detials will be presented in the extended paper.

RESULTS

Table I shows the earth parameters determined from the
measured apparent resistivities shown in Fig. 2 (a). Both the
measured apparent resistivities and their calculated results by
(7) are shown in Fig. 2 (a), the root-mean-square error 
between them is 3.633%. Fig. 2 (b) shows the comparison of

between the exact values and the approximated values
by (5) with the earth parameters shown in table I.

)(f

TABLE I. THE CALCULATED RESULT OF  THE EARTH PARAMETERS

Layer Number Resistivity( )m Thickness(m)
1 71.13 1.169
2 619.5 0.2809
3 7.278 1.119
4 387.4 1.938
5 7.625 1.916
6 119.4 Infinite

(a)                                                        (b)

Fig. 2. Some comparison results

CONCLUSION

This paper presents a fast and efficient method for
estimating earth structure with any number of layers from
Wenner’s four-probe test data. By using complex image
method, the values of the Green’s function and its partial
differentials to the earth parameters can be obtained easily
and quickly.
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Abstract�The compactly supported Radial Basis Function (RBF) is 
improved and employed to design a new response surface model. The 
model is incorporated into stochastic global optimal methods to develop 
a fast global optimal design technique for reducing the excessive 
computations which are generally required in solving inverse problems. 
To validate the proposed algorithm, typical numerical results on two 
different examples are reported. 

RESPONSE SURFACE MODEL USING COMPACTLY SUPPORTED RBF 

Stochastic methods such as genetic, simulated annealing, 
and tabu search methods are among the most popular solvers 
in dealing with global optimal design problems of electro- 
magnetic devices. However, the excessive computations 
required by the aforementioned methods often makes them 
inefficient or impractical for some practical design problems 
which require, for example, finite-element (FE) solutions 
repeatedly. To circumvent this problem, the Response Surface 
Methodology (RSM) has been introduced to reduce the 
number of function calls that involve the time consuming FE 
simulations without sacrificing the quality of the numerical 
solutions. So far the RSMs used are based on globally 
supported RBFs which will result in a full coefficient matrix. 
Due to the inefficiency of RSMs in dealing with a full matrix, 
the sample point of the present RSMs could not exceed an 
upper limit of, for example, a few thousands such as 2500 as 
mentioned in [1]. To tackle this inefficiency, the compactly 
supported RBFs are improved and then extended to develop a 
new response surface model. To enhance the accuracy of the 
proposed response surface model whilst constructing the 
derivatives in boundary points, a new interpolation scheme as 
described below is introduced. 

In general, the reconstruction of an objective function 
RDXf �:)(  on the basis of its values if  at a set of sample 

points ),,2,1( NiDX i ���  in terms of some compactly 
supported radial basis function H  is 
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                       (1) 

As demonstrated in [2], although the interpolation of the 
objective function using (1) performs very well in the inner 
region of the parameter space, it will give rise to significant 
errors in the derivatives on the boundary. To solve this 
problem, the information of the derivatives on the boundary 
of the parameter space is incorporated into (1), and the 
interpolation becomes 
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where, N is the number of the total sample points, Nb is the 
number of the boundary sample ones. 

The coefficients jc  and dk are determined from the 
following matrix equation 
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Due to the compactly supported nature of the RBFs, the 
coefficient matrix H is sparse and positively definite. 
Moreover, the RBFs used in this paper is 
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Further research shows that the performances of the RBFs 
as formulated in (5) is often overshadowed in many practical 
engineering design problems that has high dimensions in 
which the objective functions have significant differences in 
the “curvatures” of the directions of different decision 
variables. To address this issue in practical engineering 
problems, an improved RBF which is constructed using the 
tensor product of 1-D RBFs is proposed. Mathematically, the 
high dimensional RBFs being proposed is defined as 

� ��

�

n

i
ijiij DxxHrH

1
)/||)((||)(                     (6) 

where n is the dimension of the decision parameters, Di is a 
positive number called the scale parameter which controls the 
‘curvature’ of the reconstructed function in the ith direction at 
sample point Xj.

AN EFFICIENT PROCEDURE TO INCREASE THE EFFICIENCY OF STOCHASTIC 
OPTIMAL METHODS USING THE PROPOSED RSMS

To accelerate the speed of stochastic algorithms for 
solving computationally heavy design problems, a procedure 
based on the combination of the proposed Response Surface 
Model of the improved RBFs and stochastic algorithms is 
proposed and is described as: 

Initialization: Generate a number of sample points; 
Compute the objective function values using computationally 
heavy algorithms such as FE analysis at these sample points; 
determine the value of the derivatives of the objective 
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functions on the boundary sample points;  
Step 1: Determine the optimal values for the scale 

parameter Di using an “exclusion algorithm” [3]; 
Step 2: Reconstructed the optimal problem using the 

proposed RMFs and solve it by a stochastic method, then 
report all the searched local /global optimal solutions; 

Step 3: Solve the original optimal problem by using a 
deterministic method starting from the newly searched local 
optimal solutions to find the final ones. 

NUMERICAL APPLICATIONS

Validation: A mathematical function as formulated in (7) 
is deliberately designed with a significant difference in the 
‘curvatures’ among different variable directions to elucidate 
the approximation power of the proposed RSM using the 
improved compactly supported RBFs. Moreover, 

)30sin()4sin(),( yexeyxf yx ��

�                    (7) 
Case Study: The multi-objective shape optimization of a 

rectangular coreless solenoid as reported in [4] is generalized 
and then solved by using the proposed procedure to 
demonstrate its advantages over traditional approaches. The 
goals of the optimal design of this problem are to obtain a 
maximum inductance and to maintain a minimum volume of 
the solenoid under specific parametric conditions defined as 
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where, L and V are, respectively, the inductance and the 
volume of the solenoid, w1 and w2 are the weighting factors, a
and b are the rectangular cross-sectional parameters to be 
optimized.  

To reconstruct the mathematical function of (7), 16 
equidistance sampling points along each coordinate direction 
are used, and the reconstructed and the close-form functions 
are shown, respectively, in Fig. 1 and Fig. 2.  For the specific 
case study, the objective functions (including derivatives of 
boundary points) on 21 equidistance sampling point along 
each coordinate direction are firstly determined using the FE 
analysis in order to illustrate the efficiency of the proposed 
procedure although they could in fact be determined using a 
close-form expression. The optimal problem is then 
reconstructed and solved by using a tabu search algorithm to 
find the ‘nearly’ optimal solution. Moreover, the searched 
‘nearly’ optimal solutions are used as the starting point of a 
deterministic method which runs directly on the original 
computationally heavy design problem to find the final 
optimal solution. The final optimal solutions obtained by the 
proposed procedure as well as those by using the tabu search, 
together with their performance comparison, are given in 
Table 1.  From these numerical results one can see that (1) the 
proposed RSM using the improved compactly supported RBF 

is robust in reproducing a high dimensional function with 
significantly different dimensional sizes; (2) the proposed 
approach is very efficient in solving optimal problems in 
which the objective function must be determined by means of 
computationally heavy approaches such as the 3-D FE 
analysis since the number of the FE analysis of the proposed 
method is less than one seventh of that needed by the popular 
stochastic optimal method. In short, the proposed work 
provides an alternative for fast and efficient optimizations of 
complex engineering design problems.  

Fig. 1. The reconstructed mathematical function using the proposed RSM 

Fig. 2. Illustration of the close-form mathematical function  

TABLE 1. PERFORMANCE COMPARISON OF THE PROPOSED AND TRADITIONAL 
APPROACHES FOR SOLVING THE SOLENOID PROBLEM

Method a(m) b(m) fopt
No. of  FEM 

Computations
Tabu 0.01624   0.01057 -0.4386 6628 

Proposed 0.01623   0.01059 -0.4381 441+18 
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Abstract—A fast algorithm is presented to invert the structure 
parameter of the horizontal multi-layer soil. The procedure is divided 
into two independent stages. First, Fredholm equation of the first kind 
with respect to the apparent resistivity is solved by the technology of 
decay spectrum to reduce computation time greatly. Second, the 
structure parameter of soil is determined by the generalized 
Newton-Kantorovich method, which is more robust and less noise 
sensitive because of using the generalized inverse algorithm to solve the 
nonlinear equation group. The numerical results show the validities 
and main features of the proposed approach. 

INTRODUCTION

In a host of engineering applications, multilayer soils 
are modeled by N horizontal layers with distinct resistivities 
and depths. In nature, the inversion of soil parameter and 
structure is an unconstrained nonlinear minimization 
problem. However, there exist two basic difficulties. On one 
hand, the curves relating to the apparent resistivity and the 
electrode distance need to be calculated with different 
parameter to fit the measurement data, which is referred as 
computationally demanding. On the other hand, it is hard to 
obtain the derivatives of the optimized expression. The 
efficiency of the optimization algorithm without utilizing the 
derivatives information is usually rather low. In this paper, a 
fast algorithm is presented to invert the parameter of 
horizontal multi-layer earth. The key point to bypass the 
difficulties aforementioned is to invert the kernel function of 
the integral equation of apparent resistivity and soil 
parameter in two stages independently. The contribution of 
this paper lays the following aspects. First, it can save 
calculating time dramatically due to introducing a decay 
spectrum function; second, it is more robust and less noise 
sensitive because of using the generalized inverse algorithm 
to solve the nonlinear equation group. 

TWO–STAGE INVERSION ALGORITHM

Inversion of the Kernel Function 

The placement of electrodes in Wenner’s configuration 
for a N-layer earth structure is shown in Fig.1, where ih and 

i� are the thickness and resistivity of layer i respectively. 
The distance between any two electrodes is a .According to 

the solution of the potential at earth surface produced by 
point current source, the apparent resistivity )(a� satisfies 

the following Fredholm integral equation of the first kind, 
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where 0J is the Bessel function of the first kind of order 
zero. )(�B is the unknown kernel function of integral 
equation relating to the different earth model. Let )(�B

express in terms of the decay spectrum:  
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The integral identical equation (4) is applied to (3) 
implicitly.  
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By using quadrature rule and truncating N terms as the 

Fig. 1 Wenner configuration for N-layer earth 
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approximating value of integral, (3) can be discretized as  
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where kkA nn �� )(� , is the weight coefficients to be 
determined. nk is the n-th decay constant corresponding to 

the n-th sampling of integral. k� is the interval between 
two sampling points. ma is the m-th measurement distance 
of Wenner’s four electrodes method. n� can be determined 

by solving (5) by using generalized inverse method with M

greater than N , so �
�

�

�

N

n

k
n

nB
1

e)( �

�� .

Inversion of the Soil Parameter 

The theoretical expression of apparent resistivity for an 
arbitrary number of layers has been established in many 
papers [1] and can be given by in the following formulation. 
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where ),,,,,( 111 �

� NN hh �� ��x . We try to estimate the 

soil parameter by solving a nonlinear multivariable equation 
instead of using the optimized method. Let us define a 
nonlinear multivariable equation 
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The inversion procedures adopted for determining the soil 
parameter is the generalized Newton-Kantorovich [2]. The 
iteration of this algorithm can be summarized as follows: 
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where ),( )(
Jacob q

k
�xK is Jacobian matrix. )(kx and 

)(kx� are the solution of (7) and its modified value for the 
k-th iteration respectively. To improve the numerical stability, 
Q is greater than number of variables in (7) and (8) is 

solved by using generalized inverse method for every 
iteration. 

NUMERCIAL EXAMPLES 

Field measurement data of the apparent resistivity 
obtained by the Wenner four electrodes method is plotted in 
Fig.2. The inversion results of soil parameter are 
summarized in Tab. I by two-stage approach developed and
the software package CDEGS [3] respectively. Moreover, 
the actual soil parameter is also listed in Tab. I by the
geophysical exploration for the comparison purpose. 

CONCLUSION 

A two-stage approach to invert the soil parameter for an 
arbitrary number of layers is proposed in term of the 
conception of the decay spectrum. The numerical results 
show good agreement indicating that the soil parameter 
technology developed could be practically applied to 
grounding design problems. 
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Tab. I results of inverting the soil structure parameters

1st layer 2nd layer 3rd layer 4th layer 
Result m)(1h m)(1 ��� m)(2h m)(2 ��� m)(3h m)(3 ��� m)(4 ���

This paper 0.9 350 2.3 31 5.1 340 103 
CDEGS 0.7 311 1.95 26 3.9 260 125 
Actual 0.8�1.1 331�387 2.0�2.6 25�40 4.3�6.1 295�387 87�110

Fig. 2 Field measurement of the apparent resistivity 

0 50 100 150 200
0

100

200

300

A
pp

ar
en

t r
es

is
tiv

ity
 (

·m
) 

Distance between two electrodes (m)

119Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Abstract—This paper deals with the inverse problem in order to
identify microstructural features of a steel sheet on the basis of
magnetization loops. The authors discuss the main iterative principles,
based on finite element techniques and the Marquardt method.

INTRODUCTION

Mechanical properties such as hardness, ductility are directly
related to the microstructure, composition and fabrication
methods. Classical magnetic hysteresis properties such as
remanent induction, coercive force, permeability and
saturation magnetization are sensitive to the same
composition, microstructure and processing conditions.
Therefore, measurement of magnetic hysteretic properties can
provide a sensor for the mechanical properties of metallic
materials and serve as a magnetic-based nondestructive
evaluation method. It is evident that a nondestructive
evaluation method improves when considering whole family
of hysteresis return branches, or minor order hysteresis loops
instead of the classical magnetic hysteresis properties.

PREISACH HYSTERESIS MODEL

The Preisach model [1], is an accurate method of describing
the scalar hysteresis effects in magnetic materials. According
to Preisach’s approach, the hysteresis model gives as response
the magnetization M as a function of the applied magnetic
field H and its history Hhis. It rests upon the idea of a material
structure containing an infinite set of magnetic dipoles. Each
dipole has a rectangular nonsymmetrical hysteresis loop
defined by two characteristic parameters, which are denoted
by α and β (β ≤ α). In the Preisach model, the state η(α,β,t)
of the dipole (α,β) at time point t only may take the value +1
or –1:




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Here Hhis is the last extreme value of the magnetic field kept in
memory outside the interval [β,α] and which is physically
remembered in the domain structure of the material.

The density of the dipoles is represented by the Preisach

distribution function P(α,β) (PDF). The resulting magneti-
zation M is obtained from the accumulated magnetization of
all the dipoles. The magnetization is then given by
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In order to quantify how the PDF changes due to a variation

of microstructural features, a Lorentzian PDF is considered:
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����� αβ denoting the Kronecker delta.

The effect of the average grain size ξ and crystallographic
texture on the distribution function (PDF) in the Preisach
model was identified by a large number of measurements [2].
Taking into account the results of [3], one may rewrite the
parameters a, b, k1 and k2 in (3) as a function of grain size ξ
and dislocation density ζd:

dGGaa ζξ )/( 210 += (4)

dGGbb ζξ )/( 210 += (5)

dkkk ζ
11101 −= (6)

d

k
kk

ζ
21

202 += (7)

The parameter c is assumed independent from ξ and ζd.

MAGNETODYNAMIC MODEL FOR LAMINATED STEEL

The goal is to develop a numerical scheme for the accurate
recovery of the microstructural material parameters ξ and ζd

starting from the experimentally observed magnetic behavior
of laminated materials under time varying flux excitation.

The magnetic behavior of laminated steel with thickness 2d
can be described in terms of the macroscopic fields, taking
into account the interacting hysteresis and eddy current
phenomena. Making a few justifiable assumptions [4], one
obtains from Maxwell’s laws the diffusion equation

Inverse problem for magnetic sensors based on a Preisach formalism
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Here H(x,t) and B(x,t)=µ0(H(x,t)+M(x,t)) are the magnetic
field and the induction respectively. σ and µd are the electrical
conductivity and the differential permeability of the material,
the latter calculated from the Preisach model (2)-(3). The x-
axis is chosen to be perpendicular to the sheet. Throughout the
lamination, the time-dependent flux φ flows in the z direction
and the magnetic field has only one component, namely
H=H(x,t)ez. To obtain a well-posed boundary value problem
(BVP), (8) must be completed with the suitable boundary
conditions and initial conditions:
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The average induction Ba and the magnetic field at the surface
of the material Hb can be identified experimentally in a
straightforward way and are defined in the model by:
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The average magnetic induction Ba(t) is enforced by the
boundary condition while the time-dependent magnetic field
strength Hb(t) is obtained by solving the BVP (1)-(3), (9)-(10).

Starting from a measured BaHb-loop, the above magneto-
dynamic model, in combination with (4)-(7), can be used for
the identification of the parameter set p[ξ;ζd]. The function to
be fitted in this inverse problem is Hb=Hb(t;p). The merit
function to be minimized is

( )∑
=

−=
N

i
ibbi ptHH

1

22 );(χ (11)

where Hbi is the measured ‘target’ magnetic field at the surface
of the steel at the time points ti and Hb(ti;p) is the magnetic
field, calculated by the direct problem using the parameter set
p. The Marquardt scheme, which varies smoothly between
the extremes of the inverse Hessian method and the deepest
descent method, is used as nonlinear least square method [5].

NUMERICAL RESULTS

We tested the numerical scheme by enforcing an average
magnetic induction Ba=φ/2d of the following form:
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The corresponding target magnetization loop is shown in
Fig.1. The induction waveform Ba(t) is chosen in such a way
that the magnetic memory behavior of the material is included.
Fig.2 depicts the variation of the magnetic field at the surface

of the material during the Marquardt iteration procedure. The
variation of χ2,ξ and ζd are given in Table I. It was observed
that after 9 iterations, Hb(t;p) accurately approximated the
target Hbi.
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Fig.1. Measured BaHb-loop at f=1/T=500Hz
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Fig.2. The calculated Hb(t) during the Marquardt iteration, N=4800

TABLE I: VALUES DURING ITERATION PROCEDURE

START IT.2 IT.4 IT.6 IT.9
ξ 15 19,068 18,179 19,978 19,997
ζ d 8 3,8 4,375 4,992 5,001

χ2 6264304 2899816 8008 14,387 5,093
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Optimization Design on Electrode Contour Based on Novel Hybrid Algorithm 

Cao Yundong, Liu Xiaoming, Hou Chunguang, Lai Changxue, Wang Erzhi 
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Abstract-In this paper, the genetic algorithm (GA) and taboo search

(TS) algorithm are well analyzed. A novel optimization method for

continuous variables of global optimization, hybrid algorithm is proposed,

that is, the TS is embedded into the optimization processes of GA. It 

combines the advantages of both GA and TS algorithm, possessing quicker

convergence and obtaining global optimum in the most probability. The

feasibility and validity of the proposed hybrid algorithm are verified by

solving the typical mathematical function. And the practicability is proven

by optimizing the electrode contour.

INTRODUCTION

For the optimization of electric apparatus, there are two
main requirements for the methods: Firstly, it must be a global
optimization algorithm, and cannot entrap into a local optimum
or the probability is very little. Secondly, the algorithm should
be of higher efficiency, that is, the faster speed of seeking for
the optimum and the availability of the optimum. For 
optimizing the complex electromagnetic problem, it is
necessary to employ more known data, and to reduce the times
of numerical evaluation. Presently, some contributions have
been obtained in the optimization of the discrete problem.
However, the convergency, robustness and efficiency of the
optimizing tool are still the bottleneck. Aiming at these
problems, for improving the convergency and efficiency as 
well as the robustness of the optimization method, a hybrid
optimization algorithm is proposed in this paper.

HYBRID ALGORITHM OF GA AND TS 

In heuristic algorithm, TS algorithm is a very efficient one
[1,2]. It is the existence of the tabu list (TL) that avoids the 
repeats of search and combines the previous route. More
exactly optimized solutions can be obtained through controlling
of the searching neighborhood region. But there exist some
disadvantages in conventional TS algorithm. Firstly, “mobile
search” leads to that the universality of searching is not enough
and the time for calculation is largely influenced by the original
state. Secondly, the size of TL and the taboo region during
continuously searching is hard to be defined.

GA has been widely applied in the optimization of various
problems [3]. And it has a particular parallel mechanism that
guarantees the diversity of solution to a certain degree. But the
converging speed will become very slow when the solution
approaching the optimum.

In view of the convergency and universality of TS and GA
in optimization, the hybrid optimization method of improved
TS and GA is proposed, in which GA is applied as the main
frame because the global information can be clearly reflected
by using it and it boasts the strong ability of general search. The
improved TS is embedded in the “regeneration stage” of GA to
overcome the disadvantages of centralizing search of GA. Main
steps of the hybrid algorithm are as follow: 
(1). Initialization: Initialize the variables of GA and TS. A
solution information list is built.
(2). GA stage: Optimize the objective function F (x) using the
GA. Judge the stop criterion, if it is satisfied, ends the program.
(3). Regeneration judgment: If the current optimum does not
satisfy the convergence criteria and if N>N0, then go to step (4),
but if N<N0, go to step (2), where N and N0 represent the
appearance times of current optimum and the permitted
maximal appearance times of current optimum respectively.
(4). Regeneration stage of GA: The current optimum, as the initial
state of the TS, starts centralizing search using improved TS. 
(5). Judgment of the convergence criteria: If the convergence
criterion is satisfied, renew the solution information list and go to
step (2). 

CALCULATION EXAMPLES

A Typical Testing Function

In order to test the feasibility of the proposed hybrid
optimization algorithm, a typical mathematical function is 
introduced. The function expression is as follow:

222

222

))(001.01(

5.0sin
5.0),(

yx

yx
yxf

    (x, y) (-4, 4) 

The global optimum is (x, y) = (0, 0), and the function value
is 1.According to the characteristic of this function, the function
values are recorded in the TL rather than the variables. 
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The testing results of GA, improved TS and hybrid
algorithm are obtained. In which, Fig. 1-Fig. 3 illustrate the
searching course of GA, TS and hybrid algorithm, respectively.
And the calculation results are given in Table I. 

TABLE I. CALCULATION RESULTS

TS        GA          Hybrid Algorithm

The times of

computation       260         171              138

Value of objective 

function        0.995658    0.990356          0.999996

From the calculation results, it can be seen that the calculation
results using hybrid algorithm possess higher precision and
quicker convergency speed than those of GA and improved TS. 
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The times of search Fig.4. The sketch of electrode contour
Fig.1. The searching course using GA 

Optimization of the Electrode Contour

The original electric contour is shown in Fig.4, where *
represents the optimized point. When the applied voltage is 12kV,
the maximum of the electric field strength is 1197.812 V/mm.
After preprocessing of the self-adaptive grid and the electric field 
computation using the finite element method, optimization result
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is obtained by applying the proposed hybrid algorithm, as shown
in Fig.5, and the maximum of the electric field strength is
857.5803 V/mm.

The Times of search 

Fig.2. The searching course using TS

CONCLUSIONS

The feasibility and validity of the proposed hybrid
algorithm are verified by solving the typical mathematical
function. And practicability is proved by optimizing the
electrode contour. The hybrid algorithm of GA and improved
TS can be used for solving the continuous variables of global
optimization.
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Fig.5. Optimization result of the electrode contour

1. GA stage 2. TS stage 

Fig.3. The searching course using hybrid algorithm
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Electrical Impedance Imaging of Two-Phase Fields with an Adaptive Mesh Grouping
Technique
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Abstract— In electrical impedance tomography (EIT), cross-
sectional resistivity distribution is reconstructed using current
and voltage measurements made from the boundary. In this
paper, a novel adaptive mesh-grouping scheme is presented to
enhance the spatial resolution in the Gauss-Newton algorithm.

INTRODUCTION

In EIT, an array of disjoint electrodes is attached on the
boundary of the object and a set (frame) of small alternating
currents is injected into the object through these electrodes,
and then the corresponding set of voltages is measured on
the same array of the electrodes. The objective is to estimate
(reconstruct) the resistivity distribution inside the object based
on the set of measured voltages and injected currents [1].
Image reconstruction in EIT is obtained from the iterative
solution of the forward and inverse problems. The forward
solution is obtained by solving the Laplace equation based
on the FEM (finite element method). The inverse problem
in EIT is highly nonlinear and ill-posed problem. Lots of
inverse solvers with various regularization methods have been
developed [2,3].

This paper describes a novel adaptive mesh-grouping
scheme to enhance the spatial resolution of the Gauss-Newton
(GN) algorithm for the visualization of two-phase fields.
The key idea of the scheme is to reduce successively the
number of unknowns (elements) in the inverse procedure and
thus diminish the ill-conditioned characteristic of the inverse
problem.

IMAGING WITH MESH GROUPING SCHEME

Due to the ill-posedness of the ERT inverse problem, the
cost functional to be minimized necessitates regularization
such that

Φ(ρ) =
1
2
{‖V (ρ) − U‖2 + α‖Rρ‖2} (1)

where the vectors V and U ∈ �LP are the computed
and measured voltages, respectively and L and P are the
number of electrodes attached on the surface and injected
current patterns, respectively. α and R ∈ �N×N are the
regularization parameter and matrix, respectively. In this work
we use a deterministic approach called generalized Tikhonov

regularization and N denotes the number of elements in the
FEM meshes.

The most popular inverse solver for the nonlinear mini-
mization problem of the regularized cost functional (1) is the
iterative Gauss-Newton method [1]:

ρi+1 = ρi + (HT
i Hi)−1HT

i gi (2)

where Hi ∈ �(LP+N)×N and gi ∈ �(LP+N)×1 is defined by

Hi ≡
(

Ji√
αR

)
, gi ≡

(
U − V (ρi)
−√

αRρi

)
(3)

where Ji ≡ J(ρi) ∈ �LP×N denotes the Jacobian of the
mapping V (ρ)|ρ=ρi with respect to ρ and i is the iteration
number.

One of the major problems in the Gauss-Newton algorithm
is the rapid increase of the computational burden and poor
convergence characteristics as the number of unknowns (ele-
ments) is increased. Since there are just two representative
resistivity values in the two-phase fields, the intermediate
resistivity values obtained from the Gauss-Newton algorithm
are examined and classified into three groups such as target
group (TG), background group (BG) and unadjusted group
(UG), of which each TG and BG is considered as one element.
A simple classification criterion can be obtained as:

µj ≡ ρi(j)
ρo

, j = 1, 2, · · · , N (4)

where ρo is the best homogeneous resistivity value defined in
a least-square sense as:

ρo ≡ (V̄ T V̄ )−1V̄ T U (5)

where V̄ ∈ �LP is the computed voltages when ρ = 1 Ωcm.
The value of ρo is always between background and target
resistivity value in the two-phase fields. After calculating µj

from (4), the intermediate elements are classified into three
groups: if µj is larger than µTH then ρi(j) belongs to TG,
else if µj is smaller than µTL then ρi(j) belongs to BG,
otherwise ρi(j) belongs to UG.

We can construct the grouping matrix at each iteration after
classification for all of the elements; Let WTG, WBG and
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WUG ⊂ Ω be subdomain for TG, BG and UG, respectively
and define

ρi ≡ Giρ
g
i (6)

where ρg
i ≡ (ρ1, ρ2, · · · , ρN−(p+q), ρTG, ρBG)T ∈

�(N−(p+q)+2)×1 and Gi ∈ �N×(N−(p+q)+2), where p
and q are the number of elements merged in the subdomain
WTG and WBG, respectively so that the number of elements
in the subdomain WUG are equal to N − (p + q). Each
subdomain WTG and WBG is considered as one element.
The grouping matrix Gi is a sparse matrix that includes ones
in the specific locations such that it maps the resistivity value
in ρg

i to the correct element locations in ρi.
Then, at the grouping instant, one-cycle of the Gauss-

Newton algorithm can be modified as follows:

ρg
i+1 = ρg

i + {(Hg
i )T Hg

i }−1(Hg
i )T gg

i (7)

where Hg
i ∈ �(LP+N−(p+q)+2)×(N−(p+q)+2) and gg

i ∈
�(LP+N−(p+q)+2)×1 are defined by

Hg
i ≡

(
Jg

i√
αRg

i

)
, gi ≡

(
U − V (ρg

i )
−√

αRg
i ρ

g
i

)
(8)

where Jg
i ∈ �LP×(N−(p+q)+2) and Rg

i ∈
�(N−(p+q)+2)×(N−(p+q)+2) are grouped Jacobian and
regularization matrix, respectively obtained by

Jg
i = JiGi (9)

Rg
i = GT

i RGi (10)

EXPERIMENTAL RESULTS

We have developed an EIT measurement system that con-
sists of a Pentium PC, data acquisition board and control soft-
ware, current generator and switching board, and a cylindrical
phantom (8 cm in diameter) with 32 electrodes which cover
approximately 55% of the inner circumference. The phantom
simulates a two-dimensional situation such that the electrodes
are extended from the bottom of the tank to the top of the
tank. The phantom was filled up with saline (NaCl) having
resistivity of 330 Ωcm and a cylindrical plastic target (3 cm
in diameter) was placed at the center of the phantom.

In the forward computations we used the FEM with a mesh
of 3104 elements and 1681 nodes. In the inverse computations,
we used the FEM with a mesh of 776 elements (N ) and 453
nodes to reduce the computational burden. The regularization
parameter (α) was set to 5 × 10−4. The upper and lower
threshold values (µTH and µTL) for the classification are set
to 1.7 and 2.0, respectively.

Fig. 1 shows the reconstructed images from the GN method
and proposed scheme. The spatial resolution of the proposed
scheme is enhanced considerably than that of the conventional
GN method.

The grouping scheme was applied at each iteration and
the number of elements in the subdomain WTG, WBG, and
WUG were 26, 737, and 13, respectively after 2 iterations
and 36, 740, and 0, respectively after 3 iterations. As the
grouping scheme was applied successively, the number of the

200

400

600

800

1000

1200

1400

10. step

(a)

400

500

600

700

800

900

1000

1100

2. step

(b)

400

600

800

1000

1200

1400

1600

10. step

(c)

Fig. 1. Reconstructed images from (a) GN method with 10 iterations, (b)
proposed scheme with 3 iterations, and (c) proposed scheme with 10 iterations

elements in WUG is reduced to zero and finally we have just
two elements. The elapsed CPU time (1 GHz Pentium PC)
for the GN algorithm and proposed scheme are 967 sec. and
526 sec., respectively. Fig. 2 represents the condition number
(CN) which is defined by the ratio of the maximum and
minimum eigenvalues of the Hessian matrix in (7). As can
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be expected, the condition number of the proposed scheme is
reduced considerably compared to that of the GN algorithm.

CONCLUSION

A novel adaptive mesh grouping scheme is proposed to
improve the spatial resolution of the Gauss-Newton algorithm
in the two-phase electrical resistance tomography. The number
of unknowns (elements) in the inverse procedure is reduced
successively and thus the ill-conditioned characteristics of the
inverse problem is diminished.

ACKNOWLEDGMENT

This work was supported by the Nuclear Academic Re-
search Program of the Ministry of Science and Technology
(MOST) and by grant No. R01-2002-000-0040-0(2002) from
the Basic Research Program of the Korea Science and Engi-
neering Foundation.

REFERENCES

[1] T.J. Yorkey, J.G. Webster, and W.J. Tompkins, “Comparing reconstruc-
tion algorithms for electrical impedance tomography,” IEEE Trans. on
Biomedical Engr., vol. 34, pp. 843-852, 1987.

[2] K.Y. Kim, S.I. Kang, M.C.Kim, S. Kim, Y.J. Lee, and M. Vauhkonen,
“Dynamic image reconstruction in electrical impedance tomography with
known internal structures,” IEEE Trans. on Magnetics, vol. 38, no. 2, pp.
1301-1304, 2002.

[3] K.Y. Kim, B.S. Kim, M.C. Kim, Y.J. Lee, and M.Vauhkonen, “Image
reconstruction in time-varying electrical impedance tomography based
on the extended Kalman filter,” Measurement Science and Technology,
vol. 12, no. 8, pp. 1032-1039, 2001.

125Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



������������	 
�����
����� ����������

�� ��������	 
� ��� �
� �� ��
��
�������� ��	

� 
� 
����������� �
�����
 ����������

���� ��� ���	� �� �������� ����
�
� � ��� !�� "����� ���#�$���%���%	
�����%��%&�

��������� ���� ����� ���	��
�� ��	���
��	
��� ��

������
���
� ���
��
�
��� �� ��
������ �����
��
�
�	

����� ��� ������� 
� 
�� ��
����� ��	������ �����
�	

��
�
��	�� ��� ������ ��� 
�����
��� 	�������
� ��


�� �����
��
 �����
�	 ����� 	�����
��� �� 
�� ��
���

��� ��� ���
��
�� ����� ��� �������� �� 
�� �����	��

��� ������
���
� ���
��
�
��� �� �
���
����� ��������

�� 
��
 
�� �����
�	 ����� 	����
�� ���� 
�� ����

��� ��� 
�����
��� 	�������
� 
�	��� ����
�	�� ��


�� ��
������ �
 �� ����� 
��
 
��� ������	� ������ ��	�

	������ ��	���
��	
��� �� 
�� ����
��� �� 
�� �����
�	

��
�
��	� ����� 
�� �������� ������� ������
���
�

���� ��
 ������ 	���������

�� ���������	��

���������� ��������� �
 ���
������ ��
�����	 ����
 ����
�� ���
	 ��� ������ �� ����� ��
� �
� ���� ���
	 �� ���� ����
������������� �� ����� �� ��������	 ���������	 �� �
�����
��� ������ �� ��� ���������� ��������� �� ��� ������������
�� ��������� ���� ��� ������� �� ��� ��
������
�
 ��� ������
�� ����������	 ��� ��
��������� �������

�����
 ��� ������������ ���
 ����
�������� ���� ��� �����
��������� ����
����� �
� �����
�� �� ��� ���������� �������
�
 ��� ������� �� ��� �����
� �
 �
� �� ��� ���� ���
�
���� ����������	 ������ �� ���!� ������ "#$	 ��� ��
����
������ �����������
 �� ����������� �������� �� ���� ��� ����
��
� ��
���� �������� ���� ��� ������� ����
���� �������
���
����� ���� ���� �������� ���� ��� ������� �����
� �

��� �����
� ��� ������������ ������� �� ���� ��������
���� ���
 ��������� "%$	 "&$�
�
 ���� ���'	 ������ ���
���� (���� ��� ������� �� ���

��
����� �
�����
� ���
 �����	 �
� ��� �������
� ���
����
(����	 ����� ��� �
)��
��� �� ��� ����������� ����������
���	 ��� �������� �
 ��� ������� �� ��� ��
������ ���
������������ �� ����
�������� �
 ��� ����� �� �� ���!�
������� ��� ��Æ����� ���������� ��� ���� ���
���������
�
����� ������� ����� ���� ��� ������
���� ��*���
�� ���
����
 ��� ���'����
� �
� ���
 ������������� ���� ���
�
���� �� ��������� �
 �������

��� ��
���� 
�
���	�

+�� �� ��
����� � ��������
���
�� ������ ��

����� ���
���
 , ���� ������������ �	 ����� ���� �� ����
��������
���� ��� ���
�����(��� ���� �
 ��� ���
���� �,� ��� � �
���
�� ���
��������� (���� ��� ��
������ �� � ���� �� �����
--��� ��.� � / #� %� ���� 0.	 �� ����
 �
 1���#	 ���
� �����
�
����������� �����
�� )��� ���� �� ��*���
� ������
� ��
���
���� (���� ��
 �� ��
������ ��� ��� ����
��������
�
2������� ���� ����� ��� 
� �����
�� �
 ,	 �� � ����� ���

���
���� (���� �
 ����� �� ��� ���
���� ������ ����
����	

�

p p

p

p

p

p

q

q

q

q q q

1 2 3

321

4

5 5

6 6

4

�

�

0

�1

2

����� ����� 	
� �	�

��� �	�
��	�

���� ��	 � / ���� �����������
 �� ���� � �������
 �
��
� �� / 3 ������ ��� +������ �4�����


� � -���. / 3� -#.

����� ���� �� ������ �� ��� (
��� �����
� ������ �
���
����������� ���
���� ��
�����
��
���
 ��� 
����� ���
���� )� 5 ��� ��
��� Æ �� ����

����� �
 �,	 ��� 6����

 ���
���� ��
�����
 ��
 ��
�����
�� ���� 5 / ��Æ����	� ���� ��� ����
���� � ��

�� �������
�� �� �����
� -#. �
��� ���� ���
���� ��
���
���
 �� ��� ��������� ��
���
� �
 � �� �������
���
�
 ��� ����� ��
�	 ��� 7�������� ���
���� ��
�����


�� �����
�� ���� � / �
�
�
� � 
�	 ����� � �� � ���� �


�,	 ������
� ���� � �� �������� �
 �,� 84�����
 -#.
�� ������ �
��� ���� ��
�����
 ����
� ��� ������������ �
�
 , �� ����
�������� ���� ����� �������
� ��������
� ���
6����

 �
� 7�������� ��
�����
��
�
 ��� (��� ����� �� ��� ����
��������
	 � �� �������

�� �� ��
���
� ���� ,� ���
 ��� '�
�� �� ���
���� (����
� / ���� �
� �� / ����� ��� �������� �� �����
�
-#. �
��� ��� 6����

 �
� 7�������� ����	 �������������
6��� ���� �
 ��
���� � �� 
�� ���
����� ���� �� �������
��� ������� � �����������
 �� �
��������
�� ������� ��� � �����������
	 �� ��
����� ��� �������

� /
�
�

�
�

�
��

�� 9 ����� 

 � ��
�� -%.

����� � �������
�� ��� ������
 �� ��� � ���
�� ���
����
(���� �
� ,� ��� (
��� �����
�� :�����
� ���� � �� ��
�
���
� �
 ���� ,�	 ����� ����� �� ��
���� �� ��	 ��� ��
�
�����
 ������ / 3 ��������

�� / �

�
�

�
��

� � �� 



�
�

�
��

�� � �� 



� -&.

Saratoga Springs, New York USA
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

����� �������	 
�����
�����

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

����� ������������
 
�����
����� ��� � ���

�� ����� ����	 
�� 
��� � �������	�� ���� 
��� �	� ����
��������� �� �������� �	��� ��� ����� ���	�� ��

� �

����
�

�
��� � �

�

� �
�

�
�
�

�

�

�

��

������� ���� ���	 ���� ������	��� 
���� �� �� ��� 	����
����	���� ����� �����	�� �� �����	� ��� �����		 �����
��� 
���� ��

� �� ��� ���	���� ��	�����	 ��� ���  ��������
�������!

���� �������	
 ����

�

"�� �����	�� �����������	 �� ������������ �� ���
	 �	
#��!$� 
���� ��� ���% �&���� �������	�� ��� ���	���� ���
������ 
��� �	����� �������� ������������ ��! #������ � �	�
� ���
 ��� ����	�������� ������������ �����������	 ��� ���
����� �� � �' �	� �� � �'''! "�� ������� �������� �� ���
����	�������� �����������	 �� �	 ���� �������	� 
��� ����
�� ��� �����	�� �����������	! "�� ����� �� ��� ���	����
�������� �� ����	�������� ������ ��� ��� ���� �� � �' ���	
��� �� � �'''!

#����� ( ���
� ��� ��	�����	�� �� ��� ��)���� �����
�
���
� �	 ��� ����	�������� ��! ���	 �� � �'� �

���
� ��	�

������ �� ��� ����� ����
��� ������ ���	 ��� ���� �����!
*	 ��	������ ����

� ���� 	�� ��	����� 
����	 ��� ���������
��������	� 
��	 �� �� ���� �''! *	 ����������� �� �� ��������
���� ����

� ��	����� �	������� 
��	 �� � �'''� 
������ �
���������� +���! 
���� ���� ��� �������� �)�� �� #��! ( ��

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

����� ������������
 � 
�����
����� ��� � �����

10

100

1000

10000

500 1000 1500 2000

M
ax

im
um

 r
el

at
iv

e 
pe

rm
ea

bi
li

ty

Number of iterations

µ=10
100

1000

����� ����������� �� �������������� �����
���

�	 ��� ����!� ,��� � ����� �	������ �	 � �� �����%���� ���
�������� �	 ��� ���%��� �����	� �	 #��!�!
*� �� ��	������ ���� ��� ������ ����������	 �� ��)���-�

������ �� ��� ������� ���� 	�� 
��% 
��� 
��	 ������
������� �� ��� ���	���� �������� �� ������ ����� �	� ����
�� ��� ���� ��� ����� ���	���� ���������! "�� �������	��
�� � �������� ���� ��� �������	 ����� �	�� �	� �� ��� �����
��	���! �� 
���� ���������� ����� ��� ���������� ������
�� �	� ��� ��	���+�� �	����� �� ��� ������ ������ 
��!

��� ����
������

��)���-� ������� 
���� �� ���	���� �	 ��� ������	��
����������� �� ������� �� ��� ������������ ����	��������	!
*� �� ���
	 ���� ��� ������ ����� ������������ ������� 
��	
��� �����	�� �������� ������������ �� �� �� �' 
���� ���
����	�������� ������������ ���� 	�� ��	����� 
��	 ���
�����	�� �	� �� ���� �''! "�� ���������� ������ 
��� ��
�	�������� �� �	� ��� ������ ��	����!

����������

�� !� "�#	��$ %� ��& ��
 �� '��(�� )*(��
����+��(����
 ��+
(�����,& �	�����,( ��
 �&���()$ ������� �����	$ ��$ ��-.��$
�-.�+�--��

�� �� /�,� ��
 0� 1���	��� )��	�#����� �� ����������	 (��,�
 ���
�(��
���� ��(����
 ��(�����,&)$ 
���
��������	 �� �
��

��� ������� ����������	$ ��$ ��-.2�$ 2��+222�

�� 3� 4��(�� )!	��������� 
��������� (��,�
 ��� �(��
���� ��(+

����
 ��(�����,&)$ �����	� �������	$ �$ ��-.-�$ ���2+���2�

127Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Reconstruction of Transient Currents from Magnetic Data: Inverse Problem 
Formulation Employing High Order Surface Impedance Boundary Conditions 
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Abstract – The reconstruction of transient currents flowing in parallel 
conductors is achieved by means of a new time-domain Boundary Integral
Equation (BIE) formulation involving Mitzner’s and Rytov’s high order
Surface Impedance Boundary Conditions (SIBCs). Input data of the 
inverse problem are the magnetic fields at given locations near the 
conductors. In order to validate the inversion algorithm, the magnetic field 
data are computed solving the direct problem with FEM for given current 
waveforms. The improvement in accuracy of the inverse solution 
employing high-order instead of low-order SIBCs is demonstrated
numerically.

INTRODUCTION

The theoretical problem of reconstructing transient currents
flowing in parallel conductors generating magnetic field data
around them arises in the design of innovative current sensors
([1, 2, 3]) and has been solved in the time domain using a BIE
formulations employing low order SIBCs. As a matter of fact
this type of problems features low electromagnetic penetration
depth in the conductors. A natural approach in this case is to
eliminate the conducting region from the numerical procedure
by using SIBCs at the conductor/dielectric interface. Then only 
the surface of the conductors has to be discretized and the 
Boundary Element Method (BEM) can be used. 

In order to improve the accuracy of the inverse solution and
extend the range of applicability of the novel sensors low order 
SIBCs must be replaced by high order SIBCs. 

In this paper an invariant formulation employing high order
SIBCs is developed for the inverse problem of reconstructing
transient currents. The goal of the work is to demonstrate the
improvement in reconstruction accuracy of the new
formulation compared with previously proposed methods.

BIE-SIBC FORMULATION

Consider a system of N parallel conductors in which transient
currents , i=1,2…N, flow from an external source (2-D
problem). Introducing the magnetic scalar potential one can
write

tIi

filHH  (1); N

i
i

ifil
i

fil

R
IHH

1 2
(2);

where G is the fundamental solutions of the two-dimensional
Laplace equation. The BEM yields the following surface 
integral equation [4]

dlHHnGdl
n
Gc

N

i L

fil
N

i L ii 11

(3)

Assume that the duration  of the incident current pulse is so 
that the penetration depth remains small
compared to the characteristic size D of the conductor. Then 

and Hn on the conductor’s surface are related by the well-
known  SIBC of Mitzner’s order of approximation, that in our 
two-dimensional case can be represented in the form [4]

HtU
d

H
t

HHn )(
2
11 (4)

where the asterisk denotes a time-convolution product. Here 
U(t) is the unit step function, the coordinate is directed along
the contour of the conductor’s cross section, is directed 
normal to it inside the conductor and d is the local radius of
curvature corresponding to coordinate .

Let M magnetic sensors be located in the dielectric space near 
the conductors. A magnetic sensor gives an output voltage
signal equal to

ki
N

i kikk SIHStV
1

, k=1,…M (5)

In the inverse problem (3)-(5) the quantities V ,k ki  and kS
are considered to be known (measured) and the currents  are 
determined using an iteration scheme similar to that described
in [3].

iI

It was demonstrated [4] that the SIBC (5) can be represented 
in the form of asymptotic expansion in the small parameter

1Dp . Thus it is natural to represent the functions for
which the solution is sought, i.e. the scalar potential and total
current, in the form of power series in the same small
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parameter. Substituting the expansions into the formulation (3)-
(5) and equating the coefficients of equal powers of p, the 
following integral equations for the coefficients k  and ,
k=0,1,2, of the expansions are obtained:

kI

f

k=0 (perfect electrical conductor approximation)

dHnGd
n
G N

i
L

filN

i
L ii

1 01 0
0

2
(6a)

01 0 kk
N

i ikikk sSIStV k=1,…,M (6b)

k=1 (Leontovich’s approximation)

d
n
GN

i
Li

1 1
1

2

dHLHnG
N

i
L

filfil

i

1
0

011 (7a)

11 10 kk
N

i ikik sSIS , k=1…M (7b)

k=2 (Mitzner’s approximation)

d
n
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i Li1
2

2
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20 kk

N

i
ikik sSIS k=1…M (8b)

where operators  and  have been introduced as follows1L 2L

2

2
2 ; f

t
fL 1

1 ;
d

tUfL
22 (9)

and

N

i iki
fil

k RtItrH
1

2, k=0,1,2 (10) 

As it was proved in [5], these equations admit separation of 
variables into space and time components if currents are 
correlated in time so that an invariant formulation is possible.

PRELIMINARY RESULTS

Two parallel copper conductors of circular cross-sections  of 
equal diameters D = 50 mm are considered (Fig. 1).  The direct 
problem of calculating the output voltages of sensors
measuring the x-component of magnetic field at given locations
near the conductors (points P1, … , P4) is solved by means of a
commercial FEM software.  The following current waveform
of maximum value 1A is supposed to flow into the conductors
in opposite directions and the error in inversion is shown in
Fig. 2 

23
12 210exp1 ttItI  (11) 

In the full version of the paper the derivation of the invariant
inverse formulation employing Rytov’s SIBC will be given.

The convergence of the algorithm will also be discussed and 
the influence of the following factors on the computational
results will be investigated: duration and shape of the transient
current, number and position of the sensors and distance
between the conductors.

2D

D

Current I1(t)

x

y

D

D

Current I2(t)

P1 P2 P3 P4

Fig. 1. Geometry of the problem

Fig. 2. Error in reconstruction: difference between current I2 given by (11) and 
that calculated by inversion.
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Abstract  This paper deals with the inverse problem of defect 
characterization in a conductive material using eddy current 
nondestructive evaluation (NDE) methods. We consider a full 3D 
time-domain problem in the quasi-static regime. The inversion 
method exploits the properties of the Q -Transform, an integral 
operator mapping wave propagation fields into diffusive fields. 
Specifically, we show that by properly choosing the waveform of the 
exciting current, the peak of the measured quantity can be easily
related to the distance between probe and defect, as in time-of-flight
measurements employed in wave propagation NDE methods.

INTRODUCTION

 In this paper eddy current NDE test data is analyzed 
from an unusual perspective. Specifically, we show that 
under proper conditions one can obtain time-of-flight
information from eddy current NDE measurements as
well.

As is well known, the concept of time-of-flight (TOF) 
is meaningful only in the case of wave propagation
phenomenon. In the time domain, TOF refers to the time 
required for a wave to travel from the transmitter to the 
receiver. The time-of-flight is directly related to the
distance d traveled by the wave (for homogeneous
materials TOF⋅= cd , where c is the velocity of the wave) 
and can be used to reconstruct positions of material
discontinuities, interfaces, flaws etc.

With reference to diffusive phenomenon, as in the case 
of eddy current testing, the term “time-of-flight” has no 
meaning. We show in this paper that by properly choosing 
the waveform (in the time domain) of the excitation
signal, it is possible to process the data appropriately to 
obtain the distance d.  This approach has been proposed 
for scalar problems in [1-3]; preliminary results for the 
vector case are reported in [2].

Once that the equivalent time-of-flight information is 
extracted, the inverse problem can be solved by using 
method employed for wave propagation inverse problems.

In addition, time-of-flight information obtained from
eddy current tests can be fused with time-of-flight

This work has been supported by NASA, Italian Ministero
dell’Istruzione, dell’Università e della Ricerca (MIUR), Italian Space 
Agency and EURATOM.

information from ultrasonic tests. Data fusion is of interest 
for the nondestructive evaluation (NDE) community since 
it is possible to improve the accuracy of the measurement 
by conducting more than one NDE test method and 
combining the information appropriately.

We extract the time-of-flight information from eddy 
current testing data using the Q-Transform, an integral 
operator mapping solutions of wave propagating fields to 
diffusive fields.

In the full paper we will present theoretical as well as 
numerical results for a 3D problem Involving the
estimation of the position of a defect embedded in an 
infinite homogeneous conductor.

T HE Q-T RANSFORM

The time-domain Maxwell equations in the magneto-
quasi-static limit for linear, non-magnetic and non-
dispersive materials are:

( )
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
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≥∀Ω∂=×
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in0,
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0,in

0
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t
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0xh

Jeh

he

σ
µ

(1)

where e is the electric field, h is the magnetic field, J0 is 
the impressed current density (the source term), µ0 is the 
free-space magnetic permeability, ( )xσ  is the electric

conductivity, and 3ℜ⊂Ω  is a bounded domain.
The solution of (1) is related to the solution of a

fictitious wave propagation problem through the Q-
Transform which is an the integral operator acting only on 
the time coordinate, defined as:

( ) ( ) ( )dqqe
t

q
tqQ tq ,

2
,,: 4/

0
3

2

xuxvxu −
+∞

∫=→
π

(2)

where u and v are vector fields, x is the spatial
coordinate, t is the time coordinate and q is the fictitious 
time coordinate. Notice that [ ] [ ]2/1T=q

The main property of the Q-Transform is its ability to 
map solutions of hyperbolic problems to those of
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parabolic problems. This property holds for both scalar [4] 
and vector problems [5].

Following the approach of [5], we found for the
interior problem that [2]:

( ) ( )[ ] ( ) ( )[ ]qQtqQt q ,~,,,
~

, xexexhxh ∂== (4)

where ( ) ( )qq ,
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,,~ xhxe  are solutions of:
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under the constraint [ ]00 jJ Q= .

We refer to (5) as the fictitious wave propagation 
problem.

T IME-OF-FLIGHT FOR DIFFUSIVE FIELDS

The Q-Transform is the key to design both the
excitation waveform and the data processing steps
necessary to extract information relating to the distance 
between the source and the inhomogeneity.

Assuming that, as is usual in eddy current testing, the 
measurements consist of magnetic quantities such as flux 
levels or field values, it follows from (4) that:

( ) ( )[ ]qmQtm ~= (6)

where m is a time-domain (scalar) eddy current
measurement and m~  its wave propagation counterpart 
(e.g. m is a component of the magnetic flux density at the 
probe location).

Then, by exploiting the fact that m~  comes from a 
wave propagation phenomenon, we notice that:

( ) ( )fqqhqm −= α~ (7)

where α is a constant, h is a known function and qf is the 
time-of-flight. From (6) and (7) it follows that:

( ) ( )[ ]fqqhQtm −= α . (8)

Therefore, the time-of-flight information qf is embedded 
in time-domain eddy-current measurements.

The inverse problem of retrieving qf from m by
exploiting (8) has been tackled in [1]. Specifically, it is 
shown that if ( )+

fqh  is finite and different from zero, ( )qh

is differentiable for fqq > , ( )qh'  is bounded by the 

constant M  satisfying ( ) ff qqhM +<< , then m has a 

peak at 2/2
fpeak qt = .

Similarly, when u contains a Dirac pulse, i.e.
( ) ( ) ( )ff qqqqqh −+−= βαδ , where a vanishes for q<0

and |β| is bounded by a constant M1 satisfying

fqM α<<1 , then m has a peak at 6/2
fpeak qt = .

SOLUTION OF THE INVERSE PROBLEM

In this section we discuss some preliminary results for 
the canonical problem of estimating the position of a
“small” anomaly embedded in a homogenous conductor 
whose conductivity is 0σ .

We assume that the exciting field is produced by an 
(arbitrarily oriented) elementary magnetic dipole located 
at the origin of the coordinate system and that the anomaly 
is contained in a small sphere or radius R and centered at 
x0 with 0x<<R . Let γ(t) be the magnetic moment of the 

dipole and let the eddy current measurement m(t) be a 
component of the anomalous magnetic field (that is the 
magnetic field due to the presence of the anomaly)
evaluated at the origin of the coordinate system. Let the 
contrast χ be defined as ( ) ( ) 1/ 0 −= σσχ xx , where σ  is 

the conductivity when the anomaly is present ( ( ) 0=xχ
outside the anomaly).

Under proper approximations [2], the fictitious
measurement m~  related to m by (6) is:

( ) ( )fqqKqm −= ξ~ (9)
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where cq f /2 0x=  is the time-of-flight, ( ) 2/1
00ˆ −= µσc  is 

the velocity of the fictitious wave, K depends on 00 / xx

and γ~  is related to γ through [ ]γγ ~Q= .

For large 0x  we approximate ξ by the leading term 

thus obtaining m~  proportional to ( )( )fqq −4~γ . Therefore, 

the shape of m~  is given by ( )( )fqq −4~γ , regardless of the 

unknown parameter 0x . By choosing γ~  proportional to 

q4 or q3, the waveform m(t) presents a peak at 2/2
fq  or 

6/2
fq  as discussed in the previous section. Once the peak 

position peakt  is estimated from the measurements, it is 

possible to estimate 0x .
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Abstract – In this paper a novel procedure for the localization of EM 

sources in the presence of multipaths and reflections, such as those 

occurring in urban environment, is presented. The procedure requires a 

few measurements taken at accessible points to individuate accurately 

the sources positions. This inverse problem is solved by using an 

algorithm of localization based on the minimization of a cost function, 

which requires the computation of a field map, obtained by exploiting the 

ray tracing method. The presented numerical example shows the 

applicability of this procedure to model realistic situations. 

 

INTRODUCTION 

 

The development and extensive diffusion of wireless 
communication systems has generated an increasing alert for 
the possible effects on human health due to electromagnetic 
pollution in urban scenarios and also inside buildings. This 
leads to the necessity of a continuous monitoring of 
electromagnetic field strength and of the individuation of the 
interesting EM field sources [1]. Given that the position and 
the intensity of all the EM source are not generally available, 
it is highly desirable to recover this information by using few 
measurements taken at accessible points. The localization of 
sources from few measures is a complicated inverse 
problem.[2][3] 
In this paper a procedure is presented in order to individuate  
the positions of electromagnetic field sources in generic 
situations, such as urban scenarios or indoor environments, 
exploiting the knowledge of few measured values taken at 
arbitrarily selected points and the ray tracing algorithm for the 
construction of the complete EM field strength map. 
The adoption of a complex method like ray tracing is due to 
the necessity of accurate calculations of field strength in an 
environment containing obstacles, for which it is not possible 
to use the simplified model of propagation of the EM field in 
free space. In fact, differently from some radio 
communication direct links, which work under LOS (Line Of 
Sight) conditions, for wireless communications in urban 
scenarios or indoor environments the propagation conditions 
are NLOS (No Line Of Sight), and thus a more sophisticated 
approach is necessary for field strength evaluation. The ray 
tracing technique, which is the most popular technique for the 
design and the development of mobile networks, satisfies this 
need.  
The localization procedure is based on the minimization of a 
‘cost function’ related to the field strength in correspondence 
of measurement points in the set of candidate positions for 
sources within the region of interst.  
The presented numerical example shows the applicability of 
this procedure to model realistic situations. 

 

EM SOURCES LOCALIZATION PROCEDURE AND CONSTRUCTION OF EM FIELD 

STRENGTH MAP BY MENAS OF RAY TRACING ALGORITHM  

 

In the localization procedure a finite set of candidate positions 
for sources belonging to a regular grid, covering the region of 
interest is considered. Moreover a set of measurement points, 
chosen in such a way to be easily accessible, is also 
established. The positions of these measurement points belong 
also to a regular grid whenever possible and the distance 
between every two measurement points is chosen to be greater 
than a prefixed distance. 
The localization procedure minimizes the following cost 
function: 

U = ||Urt - Um|| 
where 
Um is the vector containing the known values at the 
established  measurement points. 
Urt is the vector containing the values computed in 
correspondence of the above measurement points by using the 
ray tracing method for a certain configuration of sources 
belonging to the finite set of candidate points. 
The minimization algorithm explores the universe of all the 
possible source configurations belonging to the finite set of 
candidate points. 
The construction of the field map required for the evaluation 
of each cost function U is performed by following the ray 
tracing algorithm. This is a popular numerical method to 
compute accurately field strength maps from the knowledge 
of all the information about sources and propagation 
environment, taking into account the effects of scattering, 
reflection, etc.[4] 
This method is based on optical geometry (GO) and on its 
generalization, that is geometric theory of the diffraction 
(GTD). The two main assumptions of GTD are that all the 
obstacles must have dimensions larger than wave’s length and 
that reflections can be described by plane wave formulas. 
It is worth noticing that since field propagation depends on 
obstacle characteristics (electrical characteristics, dimensions, 
etc), which determine reflection and scattering coefficients, all 
these information are necessary for the field strength 
evaluations. 
The first step of (the ray tracing) algorithm is the 
individuation of all the possible propagation paths, between 
each source and each measurement point, considering even 
multipath propagation. In fig. 1 all the multipaths between a 
source and a measurement point are shown considering 
reflection or diffraction of rays due to obstacles under NLOS.  
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In order to reduce the computational effort only multi-paths of 
order less than a specified threshold are considered. After 
having individuated these multipaths and having selected 
those to be considered, the ray tracing method computes the 
contribute of each path to the total field.  
 

 
Fig. 1 – Multipath propagation between a source (o) and a point (x) 

 
The values of EM field at point P is the sum of the contributes 
relative to all the admissible multipaths and the considered 
sources. Each contribute due to a specific path is computed 
considering the kind of the path: if it is a direct visibility path 
the field strength depends only on the distance between the 
source and the observation point; if reflections or diffractions 
are involved in the analysed paths the field strength is 
determined also by using reflection and diffraction 
coefficients of the obstacles, which depend on frequency, 
electromagnetic characteristic of the obstacles, angles of 
incidence, etc. 
Once all the data for the construction of ray tracing model are 
determined, the localization procedure is able to determine the 
source positions.  
More details about the ray tracing model used and the 
localization algorithm will be given in the full paper. 
 

NUMERICAL EXPERIMENT  

To test the developed localization procedure a simple square 
region of side 120 m is considered, which contains 3 buildings 
(EM field reflecting and diffracting obstacles) of rectangular 
shape and different sizes, and a certain number of sources, 
positioned as shown in fig. 2. The contour lines of electric 
field intensity coming out from the ray tracing algorithm is 
shown in fig. 3.  
A total number of 14 measurement points for this experiment 
have been positioned uniformly inside the above region in 
such a way to guarantee that the distance between any two 

points is higher than 20 m. A uniform grid of 25×25 points 
has been used to represent the set of positions of “candidate 
sources”. 

The results of the localization procedure for this example are 
shown in figure 2, where real (o) and estimate (+) positions of 
EM field sources are indicated. This example shows that the 
procedure is able to individuate with good accuracy EM field 
sources located in a typical urban environment even in the 
presence of reflections and diffractions. 

 
Fig . 2 – Geometry of numerical example, showing real and estimates  

positions of sources, obstacles and measurement points 

 
Fig . 3 – Contour lines of the field strength for the considered example. 
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Abstract – Inverse problems in electromagnetics are usually ill-
conditioned, requiring as such the adoption of some 
regularization technique in order to obtain reliable results. 
Anyway, the choice of the regularization method and of the 
related parameters represent a quite critical issue. Such choice 
must be based on the knowledge of reliable additional 
information on the problem to get satisfactory results. 

INTRODUCTION

The interest of the scientific community on both 
theoretical and applied aspects of problems involving 
reconstruction and identification from external measurements 
is growing steadily. An example of such problems is 
represented by the identification of the current density 
distribution in superconducting cables from external 
magnetostatic measurements using Hall Probes [1].  

This class of inverse problems is mathematically 
formulated starting from the direct problem formulation 
which, generally, is based on a direct operator, able to 
provide the effects (fields, fluxes) associated to known 
sources acting trough known systems. The direct operator is 
usually a simplified representation of the physics behind the 
phenomenon under examination, the simplification coming 
either from the approximation of real world sources in terms 
of suitable representation basis or from system simplified 
modelling, in order to take into account only a subset of the 
actual interactions. Furthermore, also the effects, being 
usually associated to measurements provided by devices 
characterized by a certain degree of uncertainty, must be 
considered known only within a certain approximation. 

On the other hand, the related inverse problems, such as 
the reconstruction and the identification problems, are aimed 
at reconstructing, in the most reliable way, the sources or the 
system characteristics, in spite of the uncertainties 
characterizing the system model and the  measurements. 
Unfortunately, the direct operators involved in many real 
world problems lead to ill conditioned inverse problems, 
showing as such a quite relevant sensitivity to uncertainties. 
In particular, measurement errors and system modelling 
inaccuracy may lead to poor accuracy and limited 
smoothness in the inverse problem solution.

Many of the commonly used inversion procedures, 
starting from the assumption that the solutions must be 
smooth, pursue such regularity also trough the adoption of 
various regularization techniques. Unfortunately, improper 
use of regularizations may unduly constrain the 
approximated solution and, consequently, cause significant 
lack of accuracy. 

This paper examines the effect of some popular 
regularization techniques on the resolution of the inverse 
problems in the class of current density reconstruction 
problems, briefly discussing limits and applicability 
conditions, and assessing their impact on the performance of 

reconstruction procedures. Some criteria for an effective 
application of regularization will also be discussed with 
reference to an example of current density identification, 
showing in particular how proper choices, founded on a 
careful analysis of the direct problem, may reveal quite  
effective in improving the solution quality. 

MATHEMATICAL FORMULATION

The typical formulation of a linear source reconstruction 
problem consists in the search for a function f (source 
function) belonging to a search space (sources space) 
projecting into the known function g (data function), 
belonging to the “data” space �, trough a projection operator 
� to be inverted (� being the direct operator describing the 
sources-effects relationship): 

� f = g. (1)

In the particular case of finite number m of 
measurements, and adopting a suitable base of dimension n
for the space , the functions f and g may be described 
trough a finite set of degrees of freedom (their “coordinates” 
in the basis spanning and �), the operator � can also be 
discretized according to the chosen representation basis for 

, leading to a discrete formulation of the direct problem: 

gfP � , (2)

where f and g are vectors of �m and �n respectively, and the 
matrix P  is the dicretized version of �.

The operator P  must then be inverted to obtain the 
inverse problem formulation. Usually, P is ill-conditioned, 
and the inverse operator will amplify the undetermination on 
the data vector g by a factor related to its conditioning 
number, leading to quite relevant errors in the reconstructed 
source vector f.

The general philosophy of the regularization techniques 
is to restrict the search space to a subset ’, characterized
by additional properties not considered in (1) (or in its 
discrete counterpart (2)). Note that the choice of the 
restriction criteria should be based on actual and robust 
knowledge, otherwise such criteria may hinder the search of 
solutions similar to the actual, noisy one, driving the solution 
process towards inaccurate, although more “appealing” (e.g. 
smoother), solutions. 

REGULARIZATION TECHNIQUES

The first, fundamental contributions to the subject, 
known in literature as “Tichonov techniques”, date back to 
early 60’s [2]. Some of them (e.g. Constrained Least 
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Squares) constrain the maximum norm of the solution vector 
f; such techniques result attractive when ||f||2 is related to an 
energy. Others (e.g. Phillips methods [2]) constrain the 
maximum norm of an image g of the solution; such 
formulations are in some sense dual to the previous ones, and 
are then suitable in cases when ||g||2 is related to an energy 
function. Some others combines the two aspects. Following 
these seminal contributions, many other techniques have 
been proposed, both for continuous formulations (1) and for 
discrete formulations (2). As an example, for the discrete 
formulation, it has been proposed [3] an approach based on 
the representation of f in a basis composed of a suitably 
chosen number of singular functions of the inverse of P .
Other approaches suggest to weight differently the elements 
of g based on the level of confidence associated to each 
measurement [4], or to constrain the variation of the elements 
of f [5].

Note that the performance of practically all the 
techniques depend critically on one or more parameters 
characterizing the various methods, which allow to balance 
the relative weight of the model equations (1) or (2) and of 
the  regularizing constraints. 

Such a variety of regularization methods and the 
associated choice of the critical parameters impose a careful 
assessment before selecting the most adequate technique, and 
the best values of the associated parameters. The general 
criterion to be adopted is to relate such decisions only to the 
consistent and reliable additional information because lack of 
physical insight may lead to unrealistic, tough 
mathematically appealing (i.e. smooth), solutions.  

In the full paper, some of the most interesting proposals 
for magnetostatic inverse problems will be critically 
compared, both in terms of physical relevance and of impact 
on the problem resolution.

PRELIMINARY RESULTS.

As a preliminary case study for the assessment of some of 
the above exposed ideas, a “mock-up cable” realised by the 
Institute of Electrical Engineering (IEE), Slovak Academy of 
Sciences, Bratislava, is considered, composed of 6 massive 
brass conductors, simulating the 6 “petals” of the 
superconducting busbar feeding the Iter Toroidal Field 
Model Coil at Forschungszentrum Karlsruhe (see Fig. 1  for 
a comparison of the mockup geometry and of the actual 
busbar). The unknown sources are the currents in each petal, 
which are fed independently, while the measurements are 
constituted by the magnetic fields, measured around the 
cable using 6 Hall Probes along assigned directions (see 
Fig.1 for a picture of the measuring device). 

Eq. (2) can be specialised as: 

HPbIG � , (3)

where I is the vector of the 6 currents in the massive brass 
petals, bHP is the vector of HP readings, and G is the Green 
matrix relating currents and fields. The currents in the petals 
are found trough a pseudo-inversion of the Green matrix. 

As an example of regularization techniques, a further 
equation has been added, imposing the (known) total current. 
In Fig. (2) results obtained using (black) or not using (grey) 
the information on total current are reported, in the case of  

Fig. 1. Comparison of TFMC cable (left) and mockup cable (right). 
Courtesy of ENEA Frascati and IEE Bratislava. 
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Fig. 2. Comparison of current reconstruction schemes in the mockup cable 
for 6 tangential HP (a) and for 6 radial HP system (b). Grey bars refer to 
6HP+Total Current, black to just 6 HP. Actual currents are also reported for 
comparison (white bars). Negative scale for (b) is cut to show the current 
values (in the order of –6�108). 

reconstruction using 6 Hall Probes oriented parallel to the 
nominal cable field (left) or perpendicular to the field lines 
(right). The exact solution is also reported for comparison 
(white).  

It appears quite evident that the information about total 
current effectively regularizes the problem in the case of Hall 
Probes perpendicular to the nominal field, while it does not 
in the other case, due to the Ampere law, and the regularizing 
equation is redundant. Note also that a regularization 
technique based on the smoothness constraint would have 
not been useful in this particular case.

In the full paper a more detailed analysis of the effect of 
various regularization techniques will be presented, on a 
number of experimental cases, in order to perform a critical 
comparison of regularization techniques for the source 
reconstruction problems in magnetostatics. 
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Abstract- A method whose aim is to reconstruct the

inhomogeneous surface impedance of a cylindrical body

from the measured far field scattering data is given.

The scattered field is represented in terms of a single

layer potential and the field values on the surface of

the scatterer are obtained through the jump relations.

Then the surface impedance is reconstructed directly

from the boundary condition itself.

I. INTRODUCTION

aces. The determination of the Impedance Boundary
Conditions IBC for a given scatterer constitutes an impor-
tant class of problems in the electromagnetic theory and
various approximate methods have been established in the
literature for special kind of geometries and surfaces [1].
In all these methods one first tries to solve the direct scat-
tering problem for a given scattering structure and then
express the IBC in terms of the electric and magnetic field
on the boundary. The surface impedance of a scattering
object can also be obtained by using the scattered data
obtained through measurements on a certain domain. In
such a case the problem is considered as an inverse scatter-
ing problem which aims to get the fields on the boundary
of the object in terms of the measured data. A method
for the reconstruction of the surface impedances of planar
boundaries has been proposed in [2].

The inverse boundary value problem we consider here
is, for a known shape of the scatterer, to reconstruct the
inhomogeneous surface impedance of the cylinder through
far field measurements in the case of plane wave illumina-
tion. First, the scattered field is represented by a single-
layer potential and the density of the single-layer poten-
tial is obtained by solving the resulting ill-posed integral
equation of the first kind through Tikhonov regulariza-
tion. The use of the jump relations for single-layer poten-
tials leads to explicit expressions of the scattered field and
its derivative on the impedance surface. Then by using
the boundary condition itself one can achieve the recon-
struction. Since the use of the boundary condition itself
constitutes an ill-posed problem, a regularized solution in
a least squares sense is also described.

II. FORMULATION OF THE PROBLEM

We consider the electromagnetic scattering problem
related to an infinitely long cylindrical body with cross-
section D. The body is located in an infinite homoge-
neous background medium with constitutive parameters
ε, µ, and σ. On the boundary of the cylinder, say ∂D,
the applicable boundary condition is the standard inho-
mogeneous impedance boundary condition (SIBC) with a
non-constant continuous normalized impedance coefficient
η = η(x), that is,

−n × (n × E) =
η(x)
ik

n × H on ∂D, (1)

where E and H are the total electric and magnetic field
vectors and n is the outward unit normal vector of ∂D,
where ∂D is the surface of the cylinder.

The inverse impedance problem related to this config-
uration consists of reconstructing the impedance function
η from the far measured far field data, say u∞. When
the boundary ∂D is known a priori, the far field pat-
tern u∞ uniquely determines the scattered field us and
consequently the total field u = ui + us in the exterior
of the scatterer D. Therefore in view of (1) the surface
impedance can be obtained from the values of the total
field u and its normal derivative ∂u/∂n on ∂D via

η(x) = −ik
u(x)

∂u

∂n
(x)

, x ∈ ∂D. (2)

Possible zeros in the denominator on the right hand side of
(2) will be taken care off by a least squares regularization.
In the sequel we will describe a method for reconstructing
the required field values on the boundary ∂D from the far
field data. To this aim we first represent the scattered
field as a single-layer potential of the form

us(x) =
∫

∂D

G(x, y)ϕ(y) ds(y), (3)

with an unknown density function ϕ. We have that the
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far field pattern of (3) is given by

u∞(x̂) =
eiπ/4

√
8kπ

∫
∂D

e−ik x̂·yϕ(y) ds(y) (4)

for the observation direction x̂ = (cos θ, sin θ) with obser-
vation angle θ. Hence, given a far field pattern u∞, we
need to solve the integral equation of the first kind

Aϕ = u∞ (5)

for the density ϕ, where the integral operator A is given
by

(Aϕ)(x̂) :=
eiπ/4

√
8kπ

∫
∂D

e−ik x̂·yϕ(y) ds(y). (6)

The operator A has an analytic kernel and therefore (5) is
severely ill-posed. For that reason some kind of stabiliza-
tion such as Tikhonov regularization has to be applied.
For a regularized solution in the sense of Tikhonov we
solve the equation

αϕ + A∗Aϕ = A∗u∞ (7)

with a regularization parameter α > 0 and the adjoint A∗

of A as given by

(A∗g)(y) =
e−iπ/4

√
8kπ

∫
Ω

eik x̂·yg(x̂) ds(x̂), y ∈ ∂D.

Once the single-layer density ϕ is known, the values u
and ∂u/∂n of the total field on the boundary ∂D can be
recovered through the jump relations for the single-layer
potential, that is, by

u(x) = ui(x) +
∫

∂D

G(x, y)ϕ(y) ds(y), x ∈ ∂D, (8)

and

∂u

∂n
(x) =

∂ui

∂n
(x) +

∫
∂D

∂G(x, y)
∂n(x)

ϕ(y) ds(y) − 1
2

ϕ(x).

(9)
It is obvious that the solution (2) will be sensitive to

errors in the normal derivative of u in the vicinity of zeros.
To obtain a more stable solution, we express the unknown
impedance function in terms of some basis functions φn,
n = 1, . . . , N, as a linear combination

η =
N∑

n=1

anφn on ∂D. (10)

A possible choice of basis functions consists of splines or
trigonometric polynomials. Then we satisfy (2) in the
least squares sense, that is, we determine the coefficients

a1, . . . , aN in (10) such that for a set of grid points x1, . . . , xM

on ∂D the least squares sum

M∑
m=1

∣∣∣∣∣u(xm) +
N∑

n=1

anφn(xm)
∂u

∂n
(xm)

∣∣∣∣∣
2

(11)

is minimized. The number of basis functions N in (10) can
be considered as some kind of regularization parameter.

IV. NUMERICAL RESULTS

In order to see the accuracy and the applicability of the
theory we consider an illustrative example. The recon-
structions of the surface impedance have been obtained
by using both the direct method and the least squares
solution. In the application of the least squares solution
the basis functions are chosen as φn(x(t)) = e−int, n =
0,±1, ...±N . The body is illuminated from the direction
φ0 = 0 and the far field data are collected at 50 equally
spaced points of the semi circle. The number of basis
functions in the least square solution is N = 5. Figure 1
illustrates the exact and reconstructed values of the real
and imaginary parts of the surface impedance in the case
of a drop-shaped cylinder. Obviously the least squares
solution still yields satisfactory results.
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Figure 1: Imaginary parts of the exact and reconstructed
values of the normalized surface impedance for the drop-
shaped cylinder.
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Abstract� An improved tabu based vector (multi-objective) optimal 
algorithm is introduced in this paper. The improvements include a 
division of the search process, a new method for fitness assignment, a 
novel scheme for the generation and selection of neighborhood solutions 
and so forth. Numerical results validate the robustness and advantages 
of the proposed method for solving vector optimal design problems. 

AN IMPROVED TABU BASED VECTOR OPTIMAL ALGORITHM

Thanks to the effort of scientists and engineers in the last 
two decades, a wealth of multi-objective optimizers have 
been developed, and some multi-objective optimization 
problems that could not be solved hitherto were successfully 
solved by using these optimizers. In terms of robustness and 
efficiency of the available vector optimizers, these optimizers 
are still in need of improvements and hence there are many 
unresolved open problems [1]. An improved tabu based 
vector optimizer is proposed in this paper. 

Diversification and Intensification Phases 

In general, an ideal solver of multi-objective designs 
should have the following features: (1) to efficiently find the 
Pareto solutions, and (2) to uniformly sample the Pareto 
optimal front, i.e., to maintain the diversity of the searched 
Pareto Solutions. To achieve the first goal, the algorithm 
should reinforce the moves that incorporate the merits of the 
Pareto solutions found in the previous search process. To 
obtain the second objective, the search process should also 
drive the search into unexplored regions to sample the Pareto 
front uniformly. Consequently, the search process of the 
proposed algorithm is divided into two phases, i.e., a 
diversification and an intensification phase. Once a solution is 
identified as a new Pareto solution, an intensifying search 
around the specified point using a gradient based Newton 
method is activated to quickly search for better or new Pareto 
solutions. The algorithm will continue in this phase until a 
transition criterion is satisfied, and the algorithm will then 
switch into the diversification phase for the next iterative 
cycle.  

Assigning Fitness Value for New States 

It is well known that in the selection of new current points 
for a tabu search, it is necessary to obtain the objective 
function values of their neighborhood solutions. As the 
objective function in a multi-objective optimization problem 
is a vector, some scalarization techniques must be used. The 
non-dominated sorting technique is improved and used in the 

proposed algorithm to decide the “fitness” value of a 
neighborhood solution [2]. The general procedure for 
assigning the fitness value of a neighborhood solution in the 
proposed algorithm is described as: 

Choose a large dummy fitness value fitv . Find the non-
dominated individuals among the neighborhood solution 
using solutions in both the neighborhood and the Pareto 
optimal archives [3], set the fitness value of the found 
solutions to fitv ;
Repeat

fitfit vv �� ;
Find the non-dominated individuals among the 
neighborhood solutions whose fitness values are not 
set;
Set the fitness value of the solutions just found to 

fitv ;
Until fitness values of all neighborhood solutions are set. 

The initial value of the fitness value, fitv , and the 
decreasing rate, �, in the proposed algorithm are, respectively, 
set to 3, and 31 , so as to guarantee that a Pareto optimal in 
the neighborhood solutions will always be selected as the new 
current one despite the introduction of fitness sharing 
functions in both parameter and objective spaces. 

Fitness Sharing Function  

To produce a uniform distribution of the searched Pareto 
solutions not only in the objective but also in the parameter 
spaces, the fitness sharing concept is introduced.  In order to 
reduce the implementing complexity, a simple fitness sharing 
function as defined below is proposed. Mathematically, the 
fitness sharing function is 

��

��

��

hh N

j

j
X

i
X

N

j

j
f

i
fi

share

xd

xd

xd

xd
xf

1

)(

)(

1

)(

)(
)(

)(/1

)(/1

)(/1

)(/1
)(        (1) 

where, ),)(( )( Xfuxd k
u �  is the point density of the Pareto 

optimal obtained around the specified point )(ix  in the u-
space, hN  is the number of the total neighborhood solutions 

of )(ix , f and X are, respectively, the objective and parameter 
spaces. 

To compute the density of the Pareto optimal for a 
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specified point, a hyper-box with the point as the centre is 
constructed and the number of the Pareto optimal points 
which lie in this box is used as a measure for its fitness 
sharing function. The fitness value of a neighbourhood 
solution, )(ix , is the sum of its fitness and fitness sharing 
function values, i.e., 

)()()( )()()( i
share

i
fit

i
fit xfxvxf ��                            (2)

Generation and Selection of Neighborhood Solutions 

 Unlike the procedure that generates the total number of 
hN  neighborhood solutions and then choose the best one as 

the new current solution, the proposed algorithm will accept a 
new neighborhood solution if its total fitness value is not 
worse than that of the current one regardless of whether the 
number of neighborhood solutions generated so far has 
reached hN or not during the neighborhood generating 
process. This will lead to a reduction in the number of total 
function evaluations. Moreover, to maintain the diversity of 
the searched Pareto solutions, the number of neighborhood 
solutions generated in the ith neighbor of the current solution 
is proportional to the step length of the neighbor. 

Transition between Intensification and Diversification 
Phases 

The proposed algorithm will start from the diversification 
phase. Once a new Pareto solution is identified, the algorithm 
will automatically switch to the intensification phase to 
intensify the search around the specific point. The algorithm 
will continue in this phase until either there is no further 
possible improvement on the specific point, or there is no 
other Pareto solution found around the specific point. 

NUMERICAL VALIDATION

The geometrical optimal design of the multi-sectional pole 
arcs of large hydro-generators as reported in [3] is solved by 
using the proposed method to demonstrate its efficiency and 
robustness. The problem is formulated as 

0
0
0s.t

min
)(max

0

0

0

1

��

����

��

THFTHF
XX

SCRSCR
e

XB

dd

v

f

                                    (3) 

 The corresponding geometrical parameters to be 
optimized are the center positions and radii of the multi-
sectional arcs of pole shoes. The searched Pareto solutions for 
the optimal design of five-sectional pole arcs of a 300 MW, 
20-pole hydro-generator by using the proposed algorithm, 
together with those of [3], are shown in Fig. 1. The 
corresponding iterative numbers used by the two methods are 
given in Table 1. To further validate the proposed algorithm, 
it is employed to study the multi-sectional pole arc design of 
another 300 MW, 44-pole hydro-generator. The computed 
Pareto solutions are shown in Fig. 2. From these two 

numerical examples one can see that for the geometrical 
optimal designs of the multi-sectional pole arcs of large 
hydro-generators, the Pareto fronts searched by the two 
algorithms, i.e., one with and another without the 
improvements proposed in this paper, are virtually the same 
and are equally uniformly distributed in the objective spaces. 
However the iterative number used by the proposed method is 
significantly less than that required by the original one.  
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Fig. 1. The searched Pareto solutions of a 300 MW, 20-pole hydrogenerator 

TABLE 1 PERFORMANCE COMPARISON OF DIFFERENT METHODS

Method The Proposed Method Results of [3] 

Iterative Number 4864 6500 
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Fig.2. The searched Pareto solutions of a 300 MW, 44-pole hydrogenerator. 
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Abstract � In electrical impedance an inverse problem has to be solved 
to reconstruct the complex conductivity distribution j�� � . The 
problem is ill-posed and, therefore, a regularization has to be used. The 
aim is to achieve the same resolution for the conductivity as well as 
for the permittivity  in 3D applying finite elements of second order. 

INTRODUCTION

Electrical impedance tomography (EIT) is used for 
reconstructing the j�� � in a region by injecting 
electrical currents in electrodes and simultaneously measuring 
the resulting potential distribution 0U on the surface [1]. For 
instance, in biomedical applications it is extremely important 
to reconstruct accurately to be able to determine the 
parameters of the Cole-model (CM) exactly. Physiological 
parameters, like the hydration state, etc., can be extracted 
from the CM parameters [2]. The inverse problem is posed in 
such a way that the regularization is applied to and to 
separately. A small numerical example is analyzed and some 
preliminary results are shown. 

THE INVERSE PROBLEM

To solve the inverse problem as mentioned above an 
objective function f is posed as shown in (1) to minimize 
the deviation between simulated voltages � �U and 
measured ones 0U on electrodes by varying . The voltage 
vectors � �U and 0U are complex, where m is the number 
of voltage ports. The finite element method (FEM) is used to 
simulate the forward problem. To each finite element (FE) i
of n  FEs a constant value i�  and i� is assigned. 

� �� �
2 2 2

2 22,
f min

� �

� � �� � � �0U U L L (1)

� � � � � �� � � � � �� �
2 * *

0 02

T
� � �� �0U U U U U U (2)

� �
2

1 12
T T n n

i i ij jj l� �
�

�

� � � �L L L          (3)

� � � � � �� �...
TT

1 mU U�U , � �0 00 ... TT
1 mU U�U (4)

� �1 ...
TT

n� �� , � �1 ...
TT

n� ��   (5) 

re imU U jU� � , *
re imU U jU� �          (6)

Since the problem is ill-posed, i.e., large changes in in the 
interior can result in small voltage changes on the surface. 
Therefore, a regularization, [3], is introduced by a 
“smoothing” operator L controlled by regularization factors 

�

� and 
�

� for and , respectively. The entries of L are

determined as follows: 1ijl � � ,   if i j�  and FE i is

adjacent to FE j ; 0ijl � ,   if i j� and FE i is not adjacent 

to FE j ;
1

n

ii ij
j

l l
�

� � �   with i j� . The Gauss-Newton 

method, [4], is  used to reconstruct by minimizing the non-
linear equation (1) iteratively as shown in (7). The update 

� �
T

� � is determined by the Hessian matrix G and the 
gradient g , see (8). In (7) and (8) t represents the iteration 
step. The Hessian matrix G as shown in (10) is 
approximated only neglecting the second order derivatives. 

� � � � � �1t t t�

�

� �

�

� � � � � �

� � � � � �

� � � � � �

            (7) 

� �

� � � � � �

� �� �
� � � �

� �

1
, ,

t
t t t t t

�

�

� �

�

� �

� �

� �

G g (8)

� �, 2 2 2T T
� �

� � �� � �g L L L LJr (9)

� �, 2 2 2T T T
� �

� �� � �G L L L LJJ         (10) 

The entries of the Jacobian matrix J in (11) are computed 
with the aid of the sensitivity theorem [5] and decomposed in 
real and imaginary parts. The residuum r is also separated in 
real and imaginary parts, see (12). The superscripts in (13) 
indicate partial derivatives of the voltage iU at port i either 

with respect to j�  and or � �j��  of the FE j .

re im

re im

� �

� �

�

� �

� �

� �

J J
J J

J                  (11) 
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� � � �� � � �� �� �0 0Re Im
TT T T T T

re im � �� � �� r r U U U Ur (12)
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j

U
J �
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�
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ij
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J �

��

�

�

�

             (13) 

QUASI-STATIC ELECTRIC FIELD

The Maxwell’s equations to be solved describing a quasi-
static electric field in the time harmonic case represented 
advantageously by the complex formalism are 

�� �E 0                    (14) 
� � 0j�� � �J D ,                (15) 

where E is the electric field intensity,  J is the conduction 
current density,  D is the electric displacement, � is the 
angular frequency and j denotes the imaginary unit. The 
relation (14) enables to introduce the electric scalar potential 
V  as 

V� ��E .                   (16) 

Considering the constitutive laws 

��J E                     (17) 
��D E ,                    (18) 

where � and � are assumed to be constant,  yields the 
partial differential equation (19) for V .

� �� � 0j V� ��� � � �               (19) 

The corresponding boundary value problem is solved by 
the finite element Galerkin technique using nodal tetrahedral 
finite elements of second order, [6].

NUMERICAL SIMULATIONS

The small imaging problem shown in Fig. 1 has been 
analyzed. The gray surfaces represent one opposite pair of 
current electrodes. Currents are injected successively in pairs 
of opposite current electrodes while all voltages on opposite 
voltage electrodes are measured, [7]. The arrangement 
consists of 8 current electrodes at the bottom and 8 voltage 
electrodes at the top of the generated surface of the cubic 
problem region. The region is subdivided in 48 FEs. The 
conductivity � is 1 /S m and the relative permittivity r� is 1
in the entire region except in a smaller cube (one eighth of the 
entire volume) where � is 5 /S m and r� is 5 .  The initial 

values for the Gauß-Newton algorithm are assumed to be as 
follows: � equals 10 /S m and r� equals 10 . In Fig. 2 is the 
error defined in (20) of the reconstructed �  with respect to 

�

�  is represented. Similar results are obtained for � .

� �
2

,
2
,

1 n i i true

i i truen�

� �

�

�

�

� �              (20) 
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0
Fig. 1. Cubic problem region with one pair of opposite current electrodes at 
the bottom. 
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THEORYAbstract – In this paper, the well-known Finite Difference Time
Domain (FDTD) method is incorporated with an unsplit anisotropic
perfectly matched layer (UA-PML) technique to design and analyze
different types of microwave filters planar-printed on microstrip-line
circuits.  The developed FDTD solver is first validated by comparing the
computed data with those published in literature, and an excellent
agreement is observed between the results.  Next, based on the specified
criteria, various planar printed microwave filter structures are designed
and analyzed, and the theoretical predictions match excellently with the
computed results for the characteristics of the proposed filter systems.

UA – PML Technique

The technique [2] assumes an artificial absorbing medium
in which the Maxwell’s equations are to be modified as 

EsjH r0 (1a)

HsjE r0 (1b)

where s  is a diagonal tensor with a matrix form INTRODUCTION

zyx

yxz

xzy

sss
sss

sss
s

00
00
00

(2)In the area of electromagnetics, it has always been a 
challenge to analytically solve the Maxwell’s equations,
particularly for the structures that consist of complex
geometry, irregular boundary conditions, and hybrid
materials.  Thanks to the advance of computer technology,
finding a full-wave solution of the Maxwell’s equations
becomes achievable using various numerical techniques.

and each element su (u = x, y, or z) is described as 

0

1
j

s u
u (3)

to which u is the attenuation factor for absorption of the
radiating electromagnetic fields.

One of the well-known numerical techniques is the Finite
Difference Time Domain (FDTD) method [1].  It expands the
Maxwell’s curl equations using central finite differences.
The method is popularly adopted due to its robustness,
versatility and simplicity for implementation.

Filter Design and FDTD Set-up

The supporting substrates used for the filter designs are 
assumed to be lossless dielectric materials with 1r , and
all conducting strips and the ground plate are assumed to be
perfectly electric conductor (PEC) and infinitesimally thin.

To this extent, an in-house computer solver has been
developed based on the FDTD algorithm in conjunction with
an unsplit anisotropic perfectly matched layer technique [2]
for absorbing boundary condition (ABC) treatment. The
solver is first validated by comparing the computed data with
some microwave integrated circuits (MICs) given in other
literature, and an excellent agreement has been found with
those published results.  The solver is then applied into the
design and analysis of various planar printed microwave filter
structures based on their specified design criteria, and it has 
been found that the computed results match very well with 
the theoretical predictions for the characteristics of those
proposed filter structures.

Excitation is realized by either a Gaussian or a Blackman-
Harris pulse at the input microstrip line feed.  Time-stepping
stability is governed by the Courant’s Stability condition, and
the characteristics of the designed filters are determined
through Fourier analysis of the extracted time domain data.

The above-mentioned UA-PML technique as explained in
[2] is adopted for the ABC treatment.  In general, a 4-layer
UA-PML medium is used for the side and top walls, while an
8-layer APML medium is adopted for the end walls whose
normal is the direction of electromagnetic wave propagation.
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NUMERICAL RESULTS AND DISCUSSIONS

The developed FDTD solver is first validated through a 
microstrip low pass filter whose layout is given in Fig. 1 [3].

r=2.2 0.794mm
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t = 0.6525ps ; Nt = 4000

5.65mm
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Fig. 1.  Configuration of the microstrip low pass filter. 

The frequency responses in terms of S-parameters are 
plotted in Fig. 2 and compared with those published in the
literature.  It is found that the computed results are 
excellently in agreement with those given in [3].
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Fig. 2.  Frequency characteristics for the microstrip low pass filter. 

The solver is applied for design and analysis of various
planar printed filter structures.  One of them is a cascaded
band pass filter as shown in Fig. 3.  A fourth order maximally
flat filter is selected as the filter type, with a central frequency
at 2.8GHz and a 3dB fractional bandwidth of 0.45.
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Fig. 3.  Configuration of the cascaded band pass filter. 

The frequency dependence of the S-parameters for the
structure is depicted in Fig. 4.  It is found from the graph that
the computed pass band properties, i.e., the central frequency

and its 3dB bandwidth, match generally well with the
predicted theoretical ones.  In particular, the central pass band
frequency, which is computed by the average of the 3dB
frequencies in S21(ƒ), is found at around 2.9GHz.
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Fig. 4.  Frequency characteristics for the cascaded band pass filter. 

CONCLUSION

A computing solver based on conventional FDTD method
incorporated with an UA-PML technique has been developed
and successfully applied to design and analyze planar printed
microwave filters.  The validation results matched excellently
with those published in literature, while the computed results
in the filter design and analysis agreed very well with
theoretical predictions and expectations. Results show that
FDTD is a robust, versatile and powerful tool in designing
and analyzing such planar printed microwave filter systems.
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Abstract � In this paper, a new formulation for the non-standard 

FDTD (NS-FDTD) method using a complex correction function is 
proposed to treat lossy media. In order to show the propagation 
characteristics of the NS-FDTD method for lossy media, the numerical 
dispersion equation and the stability condition are derived. The 
proposed NS-FDTD method is used to analyse a periodic electromagnetic 
wave absorber to demonstrate its validity. It is shown that the proposed 
NS-FDTD method is more accurate than the standard FDTD method 
and the NS-FDTD method for lossy media. 

INTRODUCTION 

The NS-FDTD method has been proposed as a high 
accuracy FDTD method [1, 2, 3]. The method was originally 
developed for lossless media and has recently been modified 
to be able to treat lossy media. However, good numerical 
characteristics have not been obtained [4]. Thus the 
development of high accuracy NS-FDTD method for lossy 
media has been desired. 

In this paper, a highly accurate NS-FDTD method is 
proposed for lossy media. The method is based on a complex 
formulation using the Sin-Cosine method. The phase velocity 
error and the stability condition are examined. The method 
has been applied to the analysis of a fin ferrite 
electromagnetic wave absorber. 

COMPLEX NS-FDTD DIFFERENCE EQUATION

In this paper, the two-dimensional TE case is described. 
The difference equations for the complex NS-FDTD method 
are expressed as follows, 
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NUMERICAL PHASE VELOCITY AND THE STABILITY CONDITION

The numerical phase velocity of the method is obtained 
from the following equation, 
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where,  
The stability condition can be obtained using the 

following procedure. Using finite difference equations (1), (2), 
and (3) we can obtain the matrix relation 
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The stability condition can then be obtained when the 
eigenvalues, g’s, of equation (6) satisfy the condition  
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RESULTS

Fig. 1 shows the normalized attenuation constant 
0�� N in ferrite, where, 0� is the theoretical physical 

attenuation constant, and N� is the numerical attenuation 
constant. Fig. 2 shows the normalized phase velocity 

0CCN in ferrite, where 0C is the physical speed of light 
in ferrite, and NC is the numerical speed of light in ferrite.
In these figures, the results from the FDTD method and the 
NS-FDTD method considering lossy media are shown. Only 
the results obtained using the complex NS-FDTD method 
agree well with the theoretical values. In these figures, (h:h/2)
indicates that x� =h and y� =h/2.

Fig. 3 shows a cross-sectional view of a fin ferrite 
electromagnetic wave absorber. In this analysis, x� , y� ,
and z� are set to �� /10. Fig. 4 shows the reflection 
characteristics of the fin ferrite electromagnetic wave 
absorber. In the figure, results obtained using the FDTD 
method are also shown. The complex NS-FDTD results agree 
well with the predicted results in Ref. [5]. 

Fig. 1 Numerical attenuation constant in ferrite.

Fig. 2 Numerical phase velocity in ferrite.

Fig. 3 Cross-sectional view of the fin ferrite electromagnetic wave absorber.

Fig. 4 Reflection characteristics of the fin ferrite electromagnetic wave 
absorber.

CONCLUSION

In this paper, a NS-FDTD method based on a complex 
formulation has been presented. The phase velocity error and 
the stability condition were examined. It was shown that the 
method has a high accuracy characteristic, not only for 
lossless media but also for lossy media. The method has been 
applied to the analysis of a fin ferrite electromagnetic wave 
absorber and the effectiveness of the method has been shown. 
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A Dispersion-Reduction Scheme for the Higher-Order (2,4) FDTD Method 

Theodoros T. Zygiridis and Theodoros D. Tsiboukis
Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece 

Abstract—A technique for the suppression of phase inaccuracies due 
to numerical dispersion in the (2,4) finite-difference time-domain 
(FDTD) method is developed and evaluated in the present paper. Based 
on a systematic choice of the material parameters, the optimization pro-
cedure is combined with the fourth-order accurate spatial operators in 
order to substantially enhance the finite difference approach. Although 
the corrected values are extracted for a single frequency, improvement 
can be verified for a wide frequency range by theoretical and experimen-
tal results. The efficiency of the proposed practice is finally exhibited 
through a variety of two and three dimensional test problems. 

INTRODUCTION

The presence of numerical dispersion in simulations with 
the finite-difference time-domain (FDTD) method has been 
recognized as a considerable source of error that limits its re-
liability range. The inability to reproduce the exact phase ve-
locity within the computational lattice leads to inaccuracies 
that are inherently accumulative and, therefore, have detri-
mental effect in the case of large domains or long simulation 
times. Due to the numerical wavenumber’s dependence on the 
frequency and the cell shape, additional errors are observed in 
wideband problems and non-uniform spatial discretizations. 
Aiming at dispersion correction, several researchers have 
suggested the exploitation of higher-order difference and time 
integration schemes [1-3], while techniques that are based on 
second-order approaches have also been developed [4-7]. 

A means of reducing numerical dispersion in the Yee al-
gorithm was proposed in [6], which accomplishes a signifi-
cant suppression of the error in the numerical wavenumber 
calculation by slightly altering the properties of the modeled 
materials. In this paper, a similar approach is combined with 
the higher-order (2,4) FDTD scheme, in order to derive a 
methodology that yields sufficiently low levels of phase dis-
crepancies, even when coarse meshes are used and without 
resorting to very small time steps. The proposed technique 
also decreases errors originated by the use of non-cubic cells, 
while it maintains its simplicity, as its implementation to ex-
isting (2,4) FDTD codes requires no significant modifica-
tions. In addition, overall improvement can be achieved at a 
specific frequency band by carefully choosing the optimiza-
tion frequency. Several numerical results demonstrate the 
usefulness and the applicability of the presented method. 

DISPERSION REDUCTION IN THE (2,4) FDTD METHOD

The dependence of the numerical phase velocity on the 
angle of propagation implies an anisotropic behavior when 
modeling isotropic materials. The technique developed herein 
can be regarded as an amendment to the aforementioned defi-
ciency, according to which proper material parameters that 
result in a more accurate estimate of the physical wavenum-
ber are determined. For the 2-D case, we consider the propa-

gation of a TE wave ( , , 0x y zE E H ) in a lossless medium 
with diagonal electric anisotropy [ , ]r rx rydiag . The dis-
persion relation for the (2,4) scheme is apparently calculated 
by admitting plane wave solutions of the form 

( )
0

x yj k x k yj tf f e e . Using the conventional symmetric 
fourth-order approximation of the spatial derivatives 
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and inserting the plane wave expressions in the discretized 
Maxwell’s equations, the dispersion relation is obtained: 
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k is the numerical wavenumber, is the angle of propaga-
tion in the 2-D lattice, 1/ 2

0 ( )c  is the speed of light and 
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t
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Using (2), k is forced to be equal to the physical wavenum-
ber k , for two distinct angles of propagation 1  and 2 .
Therefore, two equations with rx , ry being the unknown 
variables are derived and solved, yielding the following for-
mulae: 
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For 6 / 7Q , the maximum allowable time step for numeri-
cal stability is reached, which is not known in advance. The 
objective is to make the mean value of the numerical phase 
velocity equal to the physical one. Hence, after rx , ry have 
been calculated, the deviation D of the numerical velocity’s 
mean value from 0c is computed and the final rx , ry are 
acquired from (5), (6) by merely considering 0( )c D instead
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of 0c . Choosing 1 0 , 2 / 2 always results in a peri-
odic dispersion curve with an angular period of / 2 , irre-
spective of the shape of the cells. Moreover, if the time step is 
determined beforehand, the following expression holds: 

2 2
1 10

2

( cos ) ( sin )
sin ( / 2)

x y
rx

F k CF kc t
Ct

(9) 

while ry is again obtained from (6). Of course, it should be 
then verified that the predetermined time step satisfies (4). 

The extension of the aforementioned procedure to the 3-D 
case is straightforward. Specifically, we assume a medium 
that is both electrically and magnetically anisotropic. How-
ever, the relative permittivity and permeability tensors are 
chosen such that [ , , ]r r rx ry rzdiag . In this way, 

/ /u u , , ,u x y z , i.e. the intrinsic impedance of the 
considered medium remains unaltered, despite the modifica-
tion of its parameters. The final expressions for rx , ry , rz

will be given in the full paper. 
In essence, the described method provides a corrected 

value for the phase velocity method and, thus, successfully 
minimizes phase inaccuracies. For example, Fig. 1 depicts the 
dispersion curves that correspond to the Yee algorithm, the 
(2,4) FDTD and the corrected (2,4) FDTD methods for 

/ 6x , /12y , considering the maximum time step 
for each case. Furthermore, this procedure reduces the anisot-
ropy of the dispersion curves in non-cubic grids, while it re-
mains uncomplicated, as it is founded on the simplest higher-
order FDTD scheme. Finally, dispersion compensation is pos-
sible at a wide range of frequencies, thus making the optimi-
zation scheme suitable for wideband simulations as well. 

NUMERICAL RESULTS

The efficiency of the proposed method is validated in 
various single-frequency and wideband problems, with 2-D 
and 3-D configurations. For instance, we consider the case of 
a 2-D parallel-plate waveguide, where propagation of the 
TM1 mode is simulated. The 10 40 cm region of interest is 
discretized with a resolution of approximately 16 cells per 
wavelength. Initial values are prescribed to all field compo-
nents, while boundary values are specified at the two ports for 
all time steps. It is stressed that fourth-order accuracy was re-
tained in the entire domain, as higher-order, one-sided ap-
proximations of the spatial derivatives were used near the 
boundaries [3]. The errors produced by the Yee algorithm, the 
(2,4) FDTD and the corrected (2,4) FDTD methods are illus-
trated in Fig. 2, where the error at each time step is defined as 

2
1

max max 1/ 2, 1/ 2 1/ 2, 1/ 2
,

( ) num ex
z zi j i j

i j
error i j H H (10) 

The time step is kept the same for all simulations. Compared 
to Yee’s scheme, both higher-order approaches are more ac-
curate. However, the corrected method outperforms the con-
ventional one, proving its superiority at the specific test. 
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An Unconditionally Stable Higher-Order ADI-FDTD Technique
for the Dispersionless Analysis of Generalized 3-D EMC Structures 

Nikolaos V. Kantartzis, Theodoros T. Zygiridis, and Theodoros D. Tsiboukis
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Abstract—An enhanced higher-order 3-D ADI-FDTD algorithm for 
the accurate and unconditionally stable modeling of complex curvilinear 
EMC problems, is introduced in this paper. The new technique launches a 
topologically-consistent family of non-standard concepts which eliminate 
the serious dispersion errors of the usual ADI-FDTD scheme as time-step 
increases, and cancel its strong dependence on cell shape or mesh resolu-
tion. Thus, temporal increments can greatly exceed the Courant limit with 
superior stability and convergence levels. To optimize computing, higher-
order curvilinear PML absorbers are also developed. Theoretical analysis, 
along with the numerical verification of diverse structures reveal that the 
proposed method is highly precise, subdues the vector-parasitic mecha-
nisms of the ADI approach and achieves significant computational savings.

INTRODUCTION

The gradually increasing complexity of modern microwave 
devices has stipulated the needs for numerical schemes that 
combine top performance with realistic computational costs. A 
restrictive factor in the finite-difference time-domain (FDTD) 
analysis of such applications, where cells are much smaller 
than the shortest wavelength, is the Courant limit enforcing ex-
cessive numbers of temporal iterations to reach steady state. 
Lately, an efficient unconditionally stable alternating-direction 
implicit (ADI) formulation for the FDTD method has been de-
veloped [1, 2]. Its time-steps are not confined by cell attributes, 
while the profile of the modeled waveforms is highly resolved. 
However, various instructive studies [3-5] and algorithms [6-9] 
have shown that large dispersion errors are induced as the time 
interval is increased yielding thus, incorrect simulations.  

In this paper, a 3-D ADI-FDTD technique, based on curvi-
linear tensorial forms, is presented for the mitigation of the pre-
ceding lattice reflection constraints and the consistent analysis 
of electromagnetic compatibility (EMC) applications. Through 
an advanced discretization policy, the novel algorithm intro-
duces a parametric set of accurate higher-order non-standard 
schemes and conducts alternations in respect to mixed coordi-
nates rather than to each direction. This perspective suppresses 
the inherent dispersion errors and allows time-steps to substan-
tially surpass the Courant criterion. Also, the overall solution is 
further enhanced via higher-order perfectly matched layers 
(PMLs) which are derived in terms of a fully curvilinear proce-
dure. The merits of the proposed methodology are numerically 
certified with several difficult arbitrarily-curved arrangements 
that would otherwise necessitate elongated simulations. 

THE ADVANCED NON-STANDARD TOPOLOGICAL FORMULATION

The key feature of the higher-order (HO) strategy is the 
new class of non-standard operators which eliminate the struc-
tural defects of the common ADI-FDTD method. Their form is 

( )
, , ,, , , ,

1 1

( )
( )

M L
t tM m

L m m l lu v w u v w
m ls

g u,v,wf Q p f
c kL

P W , (1)

Fig. 1. (a) An inclined-slot sidewall coupled elliptical cavity, (b) an aperture 
with two elliptical slots fed by rectangular waveguides or coaxial cables. 

where M is the order of accuracy and a variable of the curvi-
linear coordinate system (u,v,w) defined by a set of g metrics. 
Coefficient L is very important, since it defines the suitable set 
of stencils, l , along each axis. For lattice consistency, opera-
tors W(m)[.], cover all optimal node tessellations – independent 
of cell shape or mesh resolution – hence enabling the use of 
fairly coarse grids and multi-directional modeling of structural 
peculiarities. A typical choice of the prior parameters is M = 4 
and L = 3, while an indicative u-directed W(m)[.] is given by    

2
/ 2, , / 2, ,( )

, , ,

/ 2, , / 2, ,

9
8(2 1)

t t
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W , (2) 

in which only the respective spatial increments towards the 
u,v,w are depicted. Function cs, in (1), controls the convergence 
of the method, whereas the degrees of freedom pm, Qm augment 
its error-annihilating behavior via the fulfillment of  

,1
1L

m ll
p m ,           

1
1/ 2M

mm
Q . (3) 

Therefore, space and time derivatives are approximated by 
very precise HO schemes and receive the following notation    

3
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/ 2 / 2
B, , , , , , , ,

/ ( )t t t t t t
T tttu v w u v w u v w u v w

f f f c t q fT , (5) 

with qA, qB being certain tuning factors and cT the non-standard 
function of T[.]. The summation, in (4), combined with a self-
adaptive compact regime, treats boundaries via the  signs.

THE 3-D HO CURVILINEAR ADI-FDTD TECHNIQUE

The generalized HO classification hosts a dispersionless 
ADI-FDTD scheme which, unlike Yee’s single advance from 
the n-th to (n+1)-th time-step, involves two sub-iterations: one 
from n to n+1/2 and the other from n+1/2 to n+1. Let us con-
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sider Ampere’s law expressed in its covariant form as teu +
gvw eu = guw vhw – guv whv via the metrical coefficients g. In the 
first sub-iteration, partial derivative vhw is implicitly described 
by its unknown pivotal values at n+1/2, while whv is explicitly 
substituted by its already computed values at n. Consequently, 

1/ 2 1/ 2n n n n
u u uw v w uv w vpos pos pos pos

e e g h g hD D+A A , (6) 

with pos = (i+1/2, j, k) and A = 2(4 gvw )/ t including addi-
tionally third-order time differentiations in gvw. The same pro-
cedure for the magnetic hw quantities (Faraday’s law), results in 

1/ 2 1/ 2n n n n
w w wu v u wv u vpos pos pos pos

h h g e g eD D+B B . (7) 

Now, pos = (i+1/2, j+1/2, j, k), B  = 2(gvu * 4µ)/ t. Due to the 
concurrent definition of eu, hw in (6), we replace hw via (7) and 

1/ 2 1/ 2 1/ 2
1 2 31/ 2, , 1/ 2, 1, 1/ 2, 1,

4 1 21/ 2, , 1/ 2, , 1/ 2, ,

3 , 1/ 2, , 1/ 2,
,

n n n
u u ui j k i j k i j k

n n n
u v w w vi j k i j k i j k

n n
u v v vi j k i j k

a e a e a e

a e b h b h

b e e

D D

D D

, (8) 

where am, bm are suitable system metrics. As (8) have a tridi-
agonal form for every j, they can be recursively solved with a 
trivial overhead. On the other hand, the second sub-iteration re-
verses the time-update of vhw and whv to give similar notions. 
Application to all Maxwell equations yields the full set of HO 
curvilinear formulae that evaluate fields along alternating direc-
tions. Expressing (8) in matrix notation, one can readily obtain 

1/ 2
1 1 1/ 2 1 1

2 2 1 11 1/ 2
2 2

nst n nst n
nstn n

nst n nst n
,  (9) 

with n = [En,Hn] and the sparse nst, nst acquired by the non-
standard time-marching concepts of (8). Theoretical analysis – 
provided in the full paper – indicates that all eigenvalues in (9) 
are always less than or equal to 1 and therefore the HO method 
is unconditionally stable. Its new dispersion relation becomes 

( 1) / 4

1/ 2

2 2 226( )
4 ( )

sin , , ,
M

M L u v w
tt S S SF , (10) 

as a function of the existing ADI-FDTD relation, F, with S =
( t/ )sin(k /2). Clearly, (10) exhibits a notable superiority.

NUMERICAL RESULTS

To verify the proposed algorithm, several 3-D scattering 
and EMC curvilinear problems, are analyzed with a resolution 
of /6 (instead of Yee’s /170 one) and truncated by HO PMLs. 
Fig. 2 gives the numerically-calculated phase velocity for vari-
ous CFLN = tADI/ tFDTD values due to a dielectric sphere ( =
5.5 0). As observed the HO ADI-FDTD method outperforms its 
2nd-order counterpart. Next, we consider the hard-to-model 
cavity of Fig. 1a with a1 = 23.44 mm, a2 = 11.96 mm, a3 =
32.87 mm, b1 = 6.28 mm, b2 = 10.26 mm, b3 = 19.34 mm and 
= 45 . Results for the S21 parameter in Fig. 3a and the first five 
resonances in Table I (CFLN = 7.215) prove the high precision 
and savings of our technique (almost 85% grid and CPU time 
reduction). Finally, Fig. 3b shows the normalized phase veloc-
ity (large temporal increments) for the aperture of Fig. 1b. Note 
the great discrepancies of the regular ADI-FDTD approach. 
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Fig. 2. Normalized phase velocity for HO and 2nd-order ADI-FDTD schemes.

Fig. 3. (a) Magnitude of S21 parameter and (b) normalized phase velocity.

TABLE I. COMPARISON OF HO AND 2ND-ORDER FDTD METHODS

2nd-order ADI-FDTD HO ADI-FDTD Reference modal 
analysis (GHz) Simulation  

196 64 142
Relative   

error 
Simulation 
84 30 72

Relative 
error  

5.2849 5.2098 1.42 % 5.2838 0.02 % 
7.1563 7.0167 1.95 % 7.1522 0.06 % 
9.3485 8.9914 3.82 % 9.3401 0.09 % 
10.5621 9.8852 6.41 % 10.5493 0.12 % 
13.9247 12.5921 9.57 % 13.9024 0.16 % 

CONCLUSIONS

A practically dispersionless ADI-FDTD method, based on 
systematic HO non-standard forms, for 3-D curvilinear EMC 
problems has been presented in this paper. The technique de-
creases radically the overall burden, while demonstrating an 
overwhelming accuracy even for considerably large time-steps.  
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Abstract—The surface-wave diffraction at the edge of a finite 
size substrate with a high dielectric constant is the dominant
mechanism affecting the radiation pattern of a microstrip patch
antenna fabricated on this material. A soft-and-hard surface 
(SHS) can be used to block the surface waves from propagating 
outward along the dielectric substrate, thus reducing the
unwanted diffraction. Microstrip antennas surrounded by the
SHS are analyzed using the finite-difference time-domain
(FDTD) technique that implements the SHS boundary conditions
using a modified subcell model. A square patch antenna on the
LTCC-GL660 multilayer substrate and a phased array of 2 2
patches are investigated as benchmarks and it is shown that the
gain of the patch with SHS increases by more than 3 dB, while
the front-to-back ratio is higher than 24 dB.

I. INTRODUCTION

The explosive growth of wireless communication systems
has led to an increasing demand for integrated compact
antennas. Thus, fabricating microstrip antennas on a high
dielectric-constant substrate (such as GaAs or LTCC) is
becoming attractive for miniaturized wireless modules.
However, direct use of high dielectric-constant substrates with
microstrip antennas results in strong surface-wave modes. The
diffraction from these surface waves at the edge of finite-size
substrates contaminates the radiation pattern and reduces the
radiation efficiency of the microstrip antennas [1]. This
concern is particularly important in phased antenna arrays for 
beam steering.

For years, a number of techniques have been developed to
improve the radiation patterns of microstrip antennas on high
dielectric-constant substrates [2]. The most popular method is
to construct a complete band gap (or perforated) structure
surrounding the patch antenna to prevent energy from being
trapped in the substrate. Unfortunately, to form a band gap in
the substrate via periodic holes requires considerable area, 
which may make it impractical for some applications. Another
approach is to lower the effective dielectric constant of 
substrate under the patch to allow for more effective radiation
[3]. This approach results in an increase in the resonant
frequency, losing the advantage of using high dielectric
substrate for reduction of antenna size.

In this paper, a soft-and-hard surface (SHS) is employed to
reduce the effect of surface waves on the radiation pattern of 
microstrip patch antennas. The concept of SHS was originated
from acoustics and introduced in electromagnetic theory in
[4]. As one of the basic electromagnetic boundaries, the SHS

is a mathematical idealization of a surface that is both
electrically and magnetically ideally conducting in one
direction defined by a real unit vector. Such a surface can be 
realized by a combination of a perfect electric conductor
(PEC) and a perfect magnetic conductor (PMC), a strip-loaded
grounded dielectric slab, or a corrugated surface. The soft 
surface along which the power-density flux is zero can be
used to design corrugated horn antennas with symmetrical
radiation patterns and low cross polarization while the hard 
surface along which the density of power flow has a
maximum could be applied to increase the aperture efficiency 
and the directivity.

The advantageous characteristics of the soft surface can be 
utilized to block the propagation of surface waves in a 
microstrip antenna, thus alleviating the diffraction at the edge
of substrate. The microstrip patch antenna is surrounded by a
substrate covered with an SHS that is formed as a soft surface 
in the outward direction. As a result, it would be difficult for 
surface waves to propagate from the microstrip patch to the 
substrate edge. The SHS-surrounded microstrip patch antenna
is analyzed using the finite-difference time-domain (FDTD) 
method. Since the electric and magnetic fields in Yee’s 
leapfrog scheme are not co-located in space or in time, the
straight implementation of an SHS for the FDTD method
requires the introduction of a modified cell (note that both
electric and magnetic fields are enforced to be zero in one
direction tangential to the SHS). A single patch and a phased 
array are investigated in this paper as a showcase of the
benefits from the use of SHS. 

II. MICROSTRIP PATCH SURROUNDED BY SHS

Fig. 1 shows a microstrip patch antenna with arbitrary
shape that has been fabricated on a finite substrate with a 
dielectric constant of r and a thickness of h. The dielectric 
substrate is backed by a metal cavity and surrounded by an 
SHS ring that is supported by another metal cavity. The ideal
SHS conditions can be characterized by the following 
symmetric boundary conditions for the electric and magnetic
fields [5]

0ˆ Ev , v 0ˆ H (1)
where is a unit vector tangential to the surface. In the 
direction parallel to v , a hard surface, along which the density
of power flow is maximized, may be realized, while in the
direction transverse to v , a soft surface where the power flow 
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ˆ

ˆ
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is zero is present. In order to prevent the surface waves from
propagating towards the edge of the substrate, it is desirable to
have a soft-surface condition in the outward direction. 
Therefore we choose v =  ( , ) and v =
( , ) along the left-and-right sides and the
front-and-back sides, respectively (see Fig. 1).

ˆ

M

x̂

for FDTD, 

0xE

ODELING FOR 

E

0xH

SHS SURFACES

ˆ ŷ
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substrate and the patch are respectively 32 mm 32 mm 2
mm and 4 mm 4 mm. The patch is surrounded by a square 
SHS ring (its inner side=16 mm and outer

is not used because it is located beneath 

fie u pletely isolated from

IV. NUMERICAL EXAMPLES

A probe-fed square microstrip patch antenna and a 2 2
element phased array are investigated. The dielectric constant 
of he substrate is chosen to be 9.5, which corresponds to the
relative permittivity of LTCC-GL660. The dimensions of the 

side =32 mm). The 
number of the FDTD computational cells is 100 100 50
with a uniform c 0.2 mm. The 
radiation patterns for the microstirp patches with and without
an

t

ell size of 0.4 mm 0.4 mm

SHS are compared in Fig. 3 at a resonant frequency of
approximately 10 GHz. It can be seen that the radiation
pattern of the patch with SHS is significantly improved. The 
gain at broadside is 9.2 dBi, about 3 dB higher than the
maximum gain for the patch without SHS. It is also noticed
that the level of the backside lobe for the SHS-surrounded 
patch is decreased by more than 14 dB. Results for the patch
array will be presented in the full paper.
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Fig. 1.  Microstrip patch antenna surrounded by a soft-and-hard surface. 

(a) E-plane                                      (b) H-plane

V. CONCLUSION

A soft-and-hard surface (SHS) is used to prevent surface 
waves from diffraction at the edge of high dielectric-constant
substrates. Microstrip patch antennas and arrays surrounded
by the SHS are analyzed using a modified FDTD model that
can effectively implement the SHS boundary conditions. The
numerical res FDTD
scheme and show that the SHS can effectively block the 
surface-wave propagation on the substrate, therefore leading 
to a significant impro t of the radiation characteristics
(increased gain and reduced backside radiation).
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Abstract — We introduce a generic procedure to reduce numeric (grid) 
dispersion error in finite-difference time-domain (FDTD) simulations. 
Dispersion error functionals are expanded in a Taylor series that, for a 
broadband signal, indicates larger dispersion errors for high frequency 
components. By a change of basis, modified FDTD update coefficients 
are obtained instead in order to minimize the dispersion error over some 
pre-assigned frequency band. Moreover, desirable properties such as a 
local dispersion error that decreases within a frequency band can be 
attained. In particular, Butterworth (maximally flat) or Chebyshev 
expansions are considered along with their application to the 
optimization of two high order FDTD schemes.  

I. INTRODUCTION 

Higher-order finite-difference time-domain (FDTD) 
schemes are traditionally obtained by using a truncated 
Taylor (McLaurin) series about a particular grid location to 
derive a solution scheme with high-order accuracy in space 
[1]. A truncated Taylor expansion suffers residual errors, and 
for broadband problems this results in larger numerical (grid) 
dispersion error for high frequency components. Because the 
overall phase error is cumulative and proportional to the 
electrical size of the problem, this error is compounded by the 
fact that, at high frequencies, the problem size is electrically 
larger.  The traditional way to combat this problem in FDTD 
is to include higher order terms in the approximation, which 
unfortunately produces increasingly larger spatial stencils. In 
this work, we discuss an alternative approach to minimize the 
dispersion error by employing expansions other than Taylor. 
Specifically, we illustrate its application to derive optimized 
FDTD schemes employing Chebyshev (CB) and Butterworth 
(BT) expansions around pre-assigned central frequencies 
(CB/BT) and ranges (CB). 

II. FORMULATION 

For a given FDTD scheme, dispersion error functionals can 
be introduced in order to quantify some aspect of the 
dispersion error to be analyzed [2,3]. For instance, an error 
functional can represent the dispersion error at a particular 
propagation angle [2]. Or it can alternatively represent the 
maximum dispersion error for all angles [3]. These error 
functional, denoted as �, can in general be expanded in a 
Taylor series with respect to the parameter q = h/�, where h
denotes the (uniform) cell size and � is the wavelength, as  

)(],,,[ 1
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�

����

nT
n qVddd ��              (1) 

where [d0 , d1 , d2 ,… dn ] are unknown coefficients to be 
determined (related to the FDTD update coefficients), and 

],,,,1[ 2 nqqqV �� . Traditional high-order FDTD schemes 
are (equivalently) usually obtained by enforcing the first m
terms above to be zero. This determines the unknown 
coefficients, and the residual error becomes  
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where '
kd are also determined. In Eq. (1),  [d0 , d1 , d2 ,… dn ]

can be viewed as the projection of  � on the subspace 
nS =span{1, q , q2 … qn}. The key point here is to observe 

that alternative basis may be chosen to expand � in nS . In 
particular, we can choose a polynomial basis set such as (BT 
filter)
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or a first-kind Chebyshev polynomial basis set (CB filter) 
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Here, qc corresponds to a center frequency and �q
corresponds to a bandwidth of interest. The expansion on any 
of these new bases can be written as  
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Enforcing the first m terms in Eq. (5) to be zero, we can 
solve for optimized coefficients. For a BT filter, the residual 
error is  
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For a CB filter, the residual error is  
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From Eqs. (2), (6) and (7), the residual errors are split into 
two terms: the first characterized by the remaining n-m-1
terms of the new basis and the second by the complement of 
the subspace nS . For convergent error functionals, the second 
term can be made arbitrarily small by increasing n. So in 
practice, we can analyze the error behavior by choosing a 
sufficient large n for the finite sum above. Note that m is
chosen independently of n.

The choice of expansion basis determines the behavior of 
the dispersion error functional in a frequency range. Using a 
BT expansion, a maximally flat behavior is obtained at a 
center frequency of choice (better group velocity properties). 
Using CB expansion, a smaller overall error is obtained in a 
bandwidth of interest (better phase velocity properties).  

III. EXAMPLES 

We apply the methodology above to two higher order FDTD 
schemes: (1) An angle-optimized FDTD (AO-FDTD), 
designed to exhibit zero dispersion error along a preassigned 
propagation direction [2], and (2) a dispersion-relation-
preserving FDTD (DRP-FDTD) designed to produce a 
minimax dispersion error for all propagation angles [3]. The 
error functional for AO-FDTD is defined directly from its 
dispersion relation [2]. Forcing it to be zero implies finding a 
FDTD scheme with zero dispersion error for a certain angle 
withi a given frequency band. The error functional for DRP-
FDTD is defined as the difference between the theoretical 
solution of its update coefficients and a series approximation 
that can be used in practical time-domain updates [3].  

Fig. 1. Normalized phase velocity of BT, CB and non-filtered AO-FDTD 
schemes at � = 90� and � = 0�. For the filtered schemes, the center frequency 
is such that qc = 0.09 

Fig. 1 shows the phase velocity, which is normalized to the 
exact phase velocity in free space, of non-filtered, BT- and 
CB- AO-FDTD schemes optimized at � = 90� and � = 0�. For  

Fig. 2. Comparison of the maximum (for all angles) normalized phase 
velocity using different DRP (4,4) schemes. 

filtered FDTD schemes, we choose a central frequency 
corresponding to qc = 0.09. It is clear that the filtered schemes 
yield smaller dispersion errors throughout the frequency band 
considered. The BT filter is more accurate than the CB filter 
close to the center frequency but CB filter has smaller overall 
error. In the CB expansion, �q provides an additional degree 
of freedom for optimization. This is illustrated in Fig. 2, 
where �q=0.02 and �q=0.035 are used for the schemes 
labeled as Chebyshev-1 and Chebyshev-2, respectively. Both 
CB filters produce FDTD schemes with smaller overall errors 
and errors near the specified optimization center than the BT 
filter.  Note in particular that the filtering schemes yield 
higher local dispersion errors at lower frequencies. Again, 
this is highly desirable since the accumulated dispersion error 
is proportional to the electric size of the FDTD domain, 
which is larger for high frequencies.

IV. CONCLUSIONS

In this paper, we have discussed a general approach to 
optimize FDTD schemes for broadband simulations. The 
approach utilizes Chebyshev or Butterworth expansions for 
error functionals related to the numerical dispersion error. In 
this manner, the behavior of the approximation error can be 
better controlled as a function of frequency and exhibit 
desirable characteristics such as, for instance, smaller local 
dispersion error in the high frequency end.   
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Abstract — We describe numerical simulations of electromagnetic logging 
tools used in oil and gas exploration using a finite-difference time-domain 
(FDTD) scheme extended to cylindrical coordinates. We pay particular 
attention to the simulation in geophysical formations exhibiting large 
contrast on the conductivity values of adjacent beds.  Phase and 
amplitude (CW) information are extracted from very early time domain 
data. A perfectly matched layer (PML) absorbing boundary condition 
extended to cylindrical coordinates and modified for conductive media 
(diffusion regime) is employed in the FDTD method to simulate the open 
domains of realistic oilfields. Results from the FDTD simulations of 
measurement-while-drilling (MWD) tools are compared against 
numerical mode matching (NMM) results, showing excellent agreement 
even for conductivity contrasts between adjacent beds as large as 10,000.

I. INTRODUCTION 

Measurement-while-drilling (MWD) constitute an 
important electromagnetic logging tool technology for the oil 
and gas exploration industry. Over the years, a variety of 
analytical and numerical methods have been developed to 
simulate logging tools in geophysical formations. Among all 
methods, those based on the direct discretization of the 
relevant partial differential equations, such as the finite-
difference time-domain (FDTD) method, are perhaps the most 
flexible to handle the complex media and geometries present 
in realistic oilfield scenarios.   

In this paper, we employ an extension of the FDTD 
scheme to 3-D cylindrical coordinates to study the response of 
MWD tools [1]. Frequency domain data is obtained from the 
time domain results using an efficient early-time 
phase/amplitude extraction algorithm [2]. Fig. 1 illustrates a 
typical MWD resistivity tool operating in a layered formation, 
consisting of one transmitter coil and two receiver coils wound 
around a steel mandrel. The transmitter emits continuous 
sinusoidal waves (CW) at 2MHz and from the voltage induced 
at the receiver coils, the conductivity of the surrounding 
formation can be estimated.  

II. FORMULATION 

Apart from its flexibility to handle complex geometric 
features of the tools, the use of FDTD allows for an easy 
incorporation of the conductive parameters of the geophysical 
formations. In addition, despite being computationally 
intensive, the FDTD has a low computational complexity, 
O(N), where N is the number of unknowns of the problem, and 
it is an explicit (matrix-free) method that requires less 
computer memory than competing methods such as the finite-

element method. For cases in which the geometry of the 
problem is axisymmetric, the three-dimensional (3-D) 
cylindrical problem can be reduced to a series of 2-D problem 
in the �-z plane. However, a 3-D FDTD algorithm has been 
developed to model cases where the problem is not 
axisymmetric. The use of a cylindrical grid is important to 
eliminate the staircasing error when representing the 
(cylindrical) geometry of the tools.  

Fig. 1. Basic geometry of a MWD resistivity tool in a layered geophysical 
formation. 

The cylindrical FDTD is augmented here by a cylindrical 
perfectly matched layer (PML) absorbing boundary condition 
(ABC). The PML ABC permits the use of a very compact 
cylindrical grid around the formation. The anisotropic medium 
(unsplit) version of the cylindrical PML is employed to yield a 
well-posed equations and avoid late time instabilities [1]. Both 
the real and imaginary parts of the complex stretching 
coefficients are modified to allow for the absorption of 
propagating spectrum and faster decay of evanescent 
spectrum, respectively.   

The quantities of interest of the MWD tool are the phase 
difference and amplitude ratio between the signals at the 
receivers. The usual approach to obtain frequency domain data 
from time domain simulations is to resort to a fast Fourier 
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Transform (FFT). In this work, we adopt an alternative 
approach based on the so-called 2E2U algorithm [2], which 
requires only very early time data.  

III. RESULTS 

For validation purposes, we present here results from the 
simulation of symmetric formations, but the FDTD method is 
equally applicable to non-symmetric formations. The result 
depicted in Fig. 2 corresponds a case where the MWD tool 
penetrates a 3-layer (Fig. 1) formation with conductivities 
equal to 5, 5�10-4 and 1 [mho/m] in regions 1�3, respectively. 
The region 2 is a 60 [in] thick. As depicted in Fig. 1, the 
transmitter is 24 [in] apart from receiver 2 and 30 [in] from 
receiver 1. The radius of the antenna coil is 4.5 [in], wound 
around a 4 [in] radius steel mandrel, and residing within the 5 
[in] radius borehole. The domain is discretized using a 
(N�,N�,Nz) = (60,336,230) grid. The PML is set up using 10 
cells both in � and z directions with cubic taper profile. The 
skin depth � of the largest conductivity formation dictates the 
cell discretization size. 

Fig. 2. Phase difference between the receivers along a large contrast 3-layer 
formation.

The cell discretization size is uniform in the z directions, 
�z = 2.54 cm. The � directions cell is discretized non-uniform 
fashion from 0.635 [cm] close to the center to 2.64 [cm] at the 
outer regions. The source at the transmitter is a ramp 
sinusoidal function. The phase of the voltage at the receivers is 
extracted using 2E2U method using averaging of a sequence 
of two time steps apart by one tenth of wavelength, until 
convergence. At each location in the formation, the phase 
difference converges around 1.5 wavelengths. Fig. 2 illustrates 
the excellent agreement between FDTD and numerical mode 
matching (NMM) [3] results.  Fig 3. shows the amplitude ratio 
between receivers in another 3-layer large-contrast formation. 
In this case, the conductivities in region 1, 2 and 3 are 1, 0.01 
and 1 [mho/m] respectively. The domain discretized with 

(N�,N�,Nz) = (50,235,180) grid. The z direction cell is 
uniform discretized with �z = 3.81 [cm]. The � direction cell 
is discretized non-uniformly from 0.635 [cm] to 3.18 [cm]. 
Again, the result shows excellent agreement against the NMM 
result. All the simulations above were produced using a Cray 
SV1.

Fig 3. Amplitude ratio between the receivers along a large-contrast 3-layer 
formation

IV. CONCLUSIONS 

The FDTD simulation of MWD logging tools in 
inhomogeneous conductive formations has been presented. 
Numerical results are validated against the NMM method.  
The present FDTD method has been shown to be instrumental 
in simulating the response of logging tools in formations with 
conductivity contrasts as large as 104.
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Abstract -  This paper describes an efficient method for the 
transient simulation of high-speed interconnects system. FDTD method 
is employed to fully characterise the high-speed interconnects into a 
subnetwork. The resultant transient waveforms are then transformed 
as frequency-domain Y  parameters by using FFT techniques. The 
macromodel of interconnect subnetwork is obtained by Vector Fitting 
[2] method. This macromodel is then synthesised into HSPICE circuit 
simulator to efficiently expedite the system transient simulation. A 
typical microstrip low-pass filter is analyzed to verify the efficiency and 
correctness of this method.

Keywords-  Electromagnetic compatibility, FDTD-Macromodeling 

INTRODUCTION 

With the rapid advancements in modern VLSI 
technology, high-speed interconnect effects become a 
dominant factor in determining the system performance [1]. 
Macromodeling method is effective to enable a complex 
interconnects system to a lower order model and to achieve a 
balance between accuracy and efficiency of interconnect 
simulation.  

 One macromodeling approach is based on frequency-
sampling data of interconnects generated from the full-wave 
electromagnetic modeling. Full-wave modeling becomes 
necessity when the discontinuity of interconnect structure as 
well as other electromagnetic effects need to be fully taken 
into account.  

In this paper, the interconnect simulation employs the 
de-coupling FDTD and Fast Fourier transform (FFT) 
techniques, which are dedicated to extract the admittance (Y) 
parameters of interconnect subnetwork with fairly complex 
geometries. Interconnect macromodel can then be created by 
rational function approximation using robust Vector Fitting 
[2] method. Finally, the transient simulation of the circuit 
package containing interconnects can be fulfilled by the 
macromodel synthesis approach. Numerical examination is 
presented to validate this technique. Similar interconnect 
simulation technique has been presented in [3] but not with 
the Vector Fitting rational approximation method. 

THREE DIMENSIONAL FDTD MACROMODELING 

Three-dimensional Finite Difference Time-Domain 
algorithm is based on the discretization of Maxwell’s 
equations usually from the differential form over FDTD unit 
cell in reference to  [4]. We assume that the media are 

uniform, isotropic and lossless. Only the resultant difference 
form of Hz and Ez components are shown below, 

The general form of Y parameter matrix is given as, 

Where, vector I and V contain n components of the terminal 

currents and voltages respectively, i.e., � � � �nIIII �,, 21� ,
� � � �nVVVV �,, 21� , which are obtained from Fast Fourier 
transform (FFT) of transient waveforms. The entry of the Y 
matrix, such as ijY , is defined as  
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RATIONAL FUNCTION APPROXIMATION BY VECTOR 
FITTING METHOD 

The frequency-domain representation of the interconnect 
subnetwork in (3) can not be directly inserted into the time-
domain simulator for transient simulation. An efficient way 
to address this problem is approximating each of the 
elements in matrix Y(s) with its corresponding low order 
rational function, Where ijc  is the direct coupling constant, 
N the total number of poles, and ij

kr and kp  the pole-
residue pair to be computed.  Equation (5) can be efficiently 
solved by Vector Fitting method [2]. The main procedures of 
this method are described as follows, 

a) Introduce an unknown function )(s� , and approximate 
it with a set of starting poles kp~ , we get 
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c) Substitute equation (6) into (7), and for a given 
frequency point ls  ( ml �1� , i.e., ijY has m sampled 
values), one can obtain 

ll bXA �   (8)
Where  
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d) Once the unknowns in (8) are computed, )(sYij can be 

expressed as )(/)()( ssWsYij �� , which shows that the 

poles of )(sYij  are coincident with the zeros of )(s� .
Substituting the values of the poles into equation (5) and 
solving the equation similar to (8), we can easily obtain 
the residues ij

kr and constant ijc of )(sYij .

MACROMODEL SYNTHESIS 

From the preceding section, the macromodel of 
interconnect subnetwork is created. And for a general n -
port subnetwork characterized by 1m  real poles and 2m
complex conjugate pole pairs, the state-space representation 
by Jordan-canonical method [1] takes the following form,  
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Matrix A, B and C are derived from pole-residue pairs. The 
subscripts ( r  and c ) denote the real and complex conjugate 
pole-residue pairs respectively. Matrix i and u contain the 
port currents and voltages. The equivalent circuit from 
equation (9) can be inserted into HSPICE simulator to 
implement the transient simulation of circuit package.   

SIMULATION EXAMPLE 

A simple example circuit shown in Fig. 1. is used to 
verify the accuracy and efficiency of the interconnect-

simulation approach presented in 
this paper.  

This example circuit is mainly 
composed of a typical microstrip 
low-pass filter, whose geometry is 
the same as that in [4]. The 
microstrip low-pass filter is 

simulated using de-coupling FDTD and FFT method to 
obtain its Y parameters. Some details in FDTD simulation 
are as follows: the unit cell size in millimeter is 

265.0,4064.0,4233.0 ������ zyx ; the time step is 
pst 441.0�� ; total grid size is zyx ����� 16011080 and 

total simulation time steps are 8000. The dispersive ABC 
and Gussian pulse source are used in FDTD simulation.  

Eighteen poles (2 real poles and 8 complex conjugate 
pole pairs) are extracted by vector Fitting method to match 

the Y parameters of this two-
port low-pass filter up to 15 
GHz. The good agreements 
between the Y parameters 
obtained by de-coupling FDTD 
& FFT techniques and Vector 
Fitting method [2] show that 
the rational approximation is 

accurate (Fig. 3.). The 
transient analysis by 
HSPICE is shown in Fig. 2. 

Fig. 3. Magnitude of Y11 and Y21: De-coupling FDTD & FFT vs. 
Vector Fitting Method 

CONCLUSIONS 

De-coupling full-wave FDTD and FFT method combined 
with rational function approximation is an efficient approach 
to address the hybrid electromagnetic (interconnect) and 
circuit problem, in which the electromagnetic field effects 
are fully considered and the strength of the HPSICE circuit 
simulator is also exploited. The Vector Fitting method used 
in this paper provides a considerably accurate way for 
macromodeling interconnect subnetwork. However, the 
deficiency of this rational function approximation approach 
is that it does not always assure a robust passive 
macromodel, which will need further study. 
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Fig 1. Simulation circuit 

Fig 2 Transient simulation results: 
voltage at port 2 (dashed line) 
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Wave propagation schemes and space-fillers
Emmi Koljonen, Janne Keränen, Lauri Kettunen

Abstract— The efficiency of Yee-like schemes depends on
the properties of the cell complexes employed. We examine
techniques to construct the mesh for explicit time domain
schemes by replicating first a regular kind of polyhedron or
cluster of tetrahedra, and then separately consider how to
take the material interfaces into account.

I. Introduction

IN this paper we seek numerically efficient techniques for
the wave propagation problem. We are especially inte-

rested in time domain schemes which enable to represent
on the discrete level at least one of the constitutive laws
with a diagonal matrix. The FIT and FDTD techniques
are exmples of such approaches.

Our starting point is to find a tesselation of space consis-
ting of a replication of one single polyhedron. We’ll first ask
whether other space-filling polyhedra than hexahedra can
be exploited, and then examine separately how one should
handle the material interfaces.

The advantage of a mesh constructed from a single po-
lyhedron is the need to build the underlying matrices only
for one replica. With smart indexing all the necessary equa-
tions can be constructed on fly, and this way one may avoid
the explicit construction of the full system of linear equa-
tions. Thus, although one often looks down on regular mes-
hes for their obvious downsides, regularity (or more preci-
sely, the symmetry) also compensates a lot in efficiency,
especially in complex problems.

II. Yee-like schemes and space-fillers

A sufficient condition for explicit Yee-like scheme is (i) a
pair of dual cell complexes such that (ii) the primal edges
and dual faces, and the dual edges and primal faces are
orthogonal to each other.

It is important to notice that any polyhedra fulfilling the-
se two basic conditions are admissible. In other words, not
only tetrahedra and hexahedra (as in FIT) are possible, but
other polyhedra may be considered as well. This motivates
us to look at so called space-fillers, Fig. 1. A space-filler
is a polyhedron which can be used to generate a tessella-
tion of space. There are only five space-filling convex po-
lyhedra with regular faces: the triangular prism, hexagonal
prism, cube, truncated octahedron, and gyrobifastigium [1].
The rhombic dodecahedron, elongated dodecahedron, and
squashed dodecahedron appearing in sphere packing are al-
so space-fillers as is any non-self-intersecting quadrilateral
prism.

Among these space-fillers at least the triangular prism,
hexagonal prism, cube, truncated octahedron, and rhom-
bic dodecahedron are eligible for Yee-like schemes: These

This work is supported by the Academy of Finland, project 53972.
E. Koljonen, J. Keränen and L. Kettunen are with the
Tampere University of Technology, Inst. of Electromagne-
tics, P.O.Box 692, FIN-33101 Tampere, Finland. E-mail:
{emmi.koljonen,janne.keranen,lauri.kettunen}@tut.fi

a) b) c) d)

e) f) g)

Fig. 1. Space-fillers: a) triangular prism, b) hexagonal prism, c) cu-
be, d) truncated octahedron, e) gyrofastigium, f) rhombic do-
decahedron and g) elongated dodecahedron

polyhedra result in a mesh whose dual is properly “ortho-
gonal” to the primal mesh. This condition is sufficient for
solving the electric and magnetic fluxes on the faces and
the emf’s and mmf’s along the edges. (Interpolation of the
fields within the polyhedra needs to be considered separa-
tely.)

The space can be also filled with other less regular poly-
hedra. For instance, the Sommerville tetrahedron [2] can be
copied to fill the whole space. More precisely, it is four sym-
metrical copies of the Sommerville tetrahedron that result
in an octahedron filling space, as shown in Fig. 2. [3]

ab b

bb

a

Fig. 2. A space-filling octahedron which is build from four copies of
the Sommerville tetrahedron i.e. a tetrahedron with two edges of
length a and four of length b, with relation 3a2 = 4b2.

Another related approach to fill space is Üngör’s [4] rat-
her recent technique to create a tesselation of space based
on a cluster of tetrahedra such that all dihedral angles of
the tetrahedra become acute, Fig. 3. This implies, that one
ends up with a tetrahedral mesh satisfying the Delaunay-
Voronoi condition, which is also a sufficient condition for
diagonal mass lumping and the construction of explicit Yee-
like schemes [5].

III. Material interfaces

The use of space filling techniques based on replications
of a single polyhedron lead to the obvious problem that ma-
terial interfaces cannot be matched precisely. Before exami-
ning, how this problem can be circumvented, let’s ask, how
serious this problem is. Evidently, in some cases –e.g. the
SAR-computations in the human head– one does not even
have an exact geometrical representation of the domain.
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Fig. 3. A part of Üngör’s mesh: 30 tetrahedra with all dihedral angles
acute.

Second, although the mesh may appear visually as a rat-
her poor approximation of the domain, the numerical error
needs not to be significant compared to the use of a proper
finite element mesh.

A simple example is employed to demonstrate this. Con-
sider an air-filled cylindrical cavity resonator with perfectly
conducting walls. In Fig. 4 three different meshes represen-
ting the cavity resonator are shown.

a) b) c)

Fig. 4. Three meshes in a cylindrical cavity resonator (height 16.5
cm and diameter 22 cm). a) Tetrahedral finite element mesh. b)

Hexahedral FIT-mesh. c) Üngör-type tetrahedral mesh.

The resonance frequencies of the cavity are compa-
red with analytic solutions in Table I. The values were
computed with three different meshes: typical FE-mesh,
FDTD/FIT-kind of approximation, and Üngör’s mesh,
meshes a, b and c in Fig. 4. With Üngör’s mesh, the cavi-
ty resonator problem was solved using standard finite ele-
ments (FE) and an explicit finite elements approach with
diagonal mass lumping (Diag).

TABLE I

Resonance frequencies of the cylindrical cavity in GHz

Mesh a) Mesh b) Mesh c)
Mode Analytic FE FIT Diag FE
TM010 1.043 1.04 1.049 1.05 1.05

TE111 1.210 1.21 1.207 1.23 1.23

TM011 1.383 1.38 1.387 1.40 1.40

TE211 1.606 1.61 1.593/1.603 1.59 1.59

TM110 1.662 1.66 1.667 1.64/1.66 1.65/1.66

TM111 1.894 1.88 1.889 1.88 1.89

TE011 1.894 1.90 1.898 1.88 1.92

TE112 1.985 1.98 1.974 - -

TE311 2.036 2.04 2.017 2.02 2.04

TM012 2.095 2.09 2.089 2.12 2.14

TM210 2.228 2.20 2.223 2.18 2.20

TE212 2.249 2.25 2.223/2.233 2.23/2.25 2.25/2.27

2.28/2.30 2.31/2.32

IV. Matching interfaces

However, it is sometimes necessary to model the geo-
metry precisely. A possibility to overcome the difficulties
related to material interfaces is to first generate a mesh by
replicating a regular polyhedron (or an elementary cluster
of tetrahedra), and then to remove at least all the elements
which intersect the interfaces. Thereafter one may create
tetrahedra refilling the space and matching with the inter-
faces. (Additional interface conditions may be needed to
match the polyhedra to the tetrahedra.)

Removal of the polyhedra and replacing them with tet-
rahedra easily implies that the explicit nature of the time
domain scheme is lost. To retain efficiency, the key issue
is whether the matrices representing the constitutive law
can be diagonalized. (As is, well known, the use of mass
matrices guarantee stability, but does not lead to efficient
computation.)

The diagonalization technique presented in [5] gives,
however, some freedom in generating the tetrahedra. The
numerical scheme is stable, if the entries

Hee(ε) = −
∫

Ω

ε∇w0
i · ∇w0

j . (1)

of the diagonalized matrix are positive. This is a less re-
strictive condition than the acute dihedral angles, as in (1)
acute angles compensate obtuse ones, and also permittivi-
ty has affect an effect as well. Even rather large angles can
be compensated if the obtuse angles are on the side with
the lower permittivity. Furthermore, some obtuse angles
may still be acceptable and they do not necessarily degra-
de efficiency, if the non-diagonal block of the lumped mass
matrix remains small [6].

V. Conclusions

The finite elements approach typically starts from the
idea of representing the domain with a finite element mesh
as accurately as possible. As the large experience with FIT
and FDTD shows, this is not always necessary in wave pro-
pagation problems. The explicit time domain schemes allow
to use any mesh consisting of replications of a single regular
polyhedron or of clusters of rather regular tetrahedra. The
material interfaces obviously do cause some problems, but
on the other hand, efficiency can be maximized by exploi-
ting regularity.
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Abstract—Time domain simulations for high-frequency applications are

widely dominated by the leapfrog time-integration scheme, especially in

combination with finite-difference methods (Finite Difference Time Do-

main, FDTD) or the Finite Integration Technique (FIT). As an explicit

method, however, the leapfrog algorithm is restricted to a maximum sta-

ble time step, and recently some alternative, unconditionally stable tech-

niques have been proposed to overcome this limitation. We analyze such

schemes using a transient modal decomposition of the electric fields. It is

shown that stability alone is not sufficient to guarantee correct results, but

additionally important conservation properties have to be met.

I. INTRODUCTION

Especially in high-frequency field simulations, where one
often deal with lossless or at least low-loss structures and a
large number of time steps, stability is one of the most impor-
tant properties of time domain methods, and a required condi-
tion for their overall convergence. Here, very often Finite Dif-
ference methods (FDTD) and the time domain variant of the
Finite Integration Technique (FIT, [1]) are used, and therein
the so-called leapfrog (LF) time stepping algorithm. Based
on central difference approximations for the time derivatives
in Maxwell’s equations, it is known to be conditionally stable
— ruled by a maximum stable Courant time step width∆t0 —
and to conserve the electromagnetic energy in lossless struc-
tures.
Since the time step limitation in the LF scheme is coupled to

the resolution of the spatial grid, it sometimes leads to strongly
oversampled time signals and thus to a poor efficiency of the
overall method. As a remedy, some alternative, ’quasi-implicit’
approaches have been proposed, such as the Alternating Direc-
tion Implicit (ADI) variant of FDTD [2], or the family of un-
conditionally stable algorithms proposed in [3]. However, it
has been shown by various authors [4], [5], [6], [7] that such
schemes may have severe accuracy problems if the Courant
limit of the related LF approach is considerably exceeded. In
this paper this dissatisfying result is analyzed using an eigen-
mode decomposition of the transient fields.

II. ALGEBRAIC FORMULATION

We use here the notation of the FIT [1], where Maxwell’s
equations are transformed into a set of algebraic equations (lin-
ear case, without currents):

M−1
µ C�e = − d

dt

�

h, M−1
ε CT �

h =
d

dt
�e (1)

S
��

b = 0, S̃
��

d = q. (2)

C and S are the topological ’curl’-, and ’source’-matrices, re-
spectively, and the vectors �e and

�

h contain the electric and
magnetic voltage-type degrees of freedom on a pair of stag-
gered grids. The material matricesM−1

ε andM−1
µ are diagonal

and positive definite in the simplest case.
An important property of these equations — which can also

be used to derive the FDTD-method— is the exact source-free
property of curl-fields:

SC = 0, S̃CT = 0. (3)

Finally, equations (1) can be combined to a large system of
differential equations for a composite vector x:

d

dt
x = Ax (4)

with

x =
(�

h
�e

)
andA =

(
0 −M−1

µ C
M−1

ε C̃ 0

)
. (5)

The leapfrog scheme arises from the allocation of the fields
on a staggered time axis and central difference approximations
for the time derivatives. It can be summarized in the update
equations

x(n+1) = GLF (∆t) x(n), x(n) =

(
�

h
(n)

�e(n+1/2)

)
(6)

with the iteration matrix

GLF (∆t) =
(

I −∆tM−1
µ C

∆tM−1
ε C̃ I−∆t2M−1

ε C̃M−1
µ C

)
. (7)

The ADI-scheme is based on a splitting of the operator ma-
trix C = C1 + C2 in two parts, both of which are used in
alternating order in the update equations [6]. This leads to an
update scheme in two half-steps, which can be summarized by
an iteration matrixGADI(∆t) (see [6] for the details).
For the eigenvalues of these iteration matrices one can find

the relations

|λG,LF (∆t)| = 1 ⇔ ∆t ≤ ∆t0 (8a)

|λG,ADI(∆t)| = 1 ∀∆t > 0, (8b)

which are a sufficient condition for the stability of themethods.
In most practical cases the dimension of the iteration matri-

ces is too large to perform a further numerical analysis. For the
small test example presented below, however, the matrices are
of manageable size, and the results of (8) can be visualized as
shown in Fig. 1.
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Fig. 1. Eigenvalues of the iteration matrices of LF (left) and ADI (right).

III. TRANSIENT MODAL EXPANSION

In the following, the LF and ADI schemes are applied to
a 2D (TE) model problem adapted from [7]. It describes the
transient charging process of a simple plate capacitor, driven
by a 750kHz current pulse (cf. Fig. 2).

I(t)

t

I(t)

0.8m

0
.2

m

Fig. 2. Model problem: Charging process of a 2D plate capacitor.

Fig. 3 shows some eigenmodes of the related system matrix
A: A static mode (left) with ∇ × �E = 0, λA = 0 and λG =
1, a second static mode (’plate mode’) describing the desired
stationary field solution, and a dynamic mode (right) with∇×
�E �= 0, λA �= 0, and λG = eiϕ.

static mode plate mode dynamic mode

Fig. 3. Model problem (half structure): Electric fields of a static eigenmode,
the plate mode, and a dynamic mode in the plate capacitor.

During the time stepping process the electric fields can now
be decomposed into these (and all the other) eigenmodes. The
results of this transient modal expansion, the expansion coeffi-
cients as a function of simulation time, are shown in Fig. 4.
For the Courant time step∆t0 (upper figure) the ADI and LF

curves for the plate mode and the dynamic modes are nearly
indistinguishable. However, in the ADI simulation arises one
more static mode with a magnitude of about 10% at steady
state, which cannot be seen in the LF (reference) results, where
all the static modes are below numerical noise. For an enlarged
∆t = 3∆t0 (lower figure, where no LF results are available
any more) the amount of this ’parasitic’ field reaches the order
of magnitude of the desired field solution (plate mode).
In the final paper we will show that the reason for these par-

asitic solution is the loss of orthogonality between the eigen-

t
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dynamic (ADI/LF)

t=3 t0
static (ADI)
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-6
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-4
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-2
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Fig. 4. Transient modal expansion coefficients (logarithmic) for different ∆t.

modes in the ADI iteration matrix: Whereas the static modes
remain unchanged compared to the system matrix A (which
can be proven for the 2D TE-case), the dynamic modes are
’contaminated’ by static fields from the kernel of the curl oper-
ator. As a consequence, the transient fields in the ADI process
are not source-free, resulting in an energy transfer into parasitic
(non-physical) fields.

CONCLUSION

A transient modal expansion of the electric field in time do-
main methods has been used to analyze different time stepping
approaches. Using this powerful tool it can be shown that the
ADI method, although being unconditionally stable, does not
conserve the energy of the dynamic eigenmodes — even for
moderate time steps.
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Abstract - A numeric model based on Transmission Line Matrix Method 
(TLM) is proposed to predict electromagnetic field’s levels and calculate 
Path Loss for indoor wireless communication. For this purpose, an office 
room was modeled. Different constitutive room materials were 
considered. The excitation source was modeled by a quarter wave 
monopole antenna. The results show that the TLM numerical approach 
is well suited to be used as a tool for study of Path Loss prediction, being 
capable to provide accurate results. 

INTRODUCTION

Nowadays the wireless indoor communication has 
suffered a great expansion. For that reason, during the last 
years, there has been increasing interest in the application of 
computational techniques to model indoor channel 
propagation. In this way, the aim of this work is to present the 
TLM (Transmission Line Matrix Method) as a tool to predict 
the electromagnetic waves propagation and to calculate de 
Path Loss in a typical urban indoor environment. 

Although TLM has been used successfully for many years 
in solving RF and microwave problems, apparently, it has not 
been used in applications involving electromagnetic indoor 
propagation predictions. 

CALCULATION MODEL AND METHOD

For simulations we used a 2D TLM algorithm. The mesh 
employed consists of “parallel” topology cells [1]. Our 
computational program positions the grid in a x-y plane, and 
calculates field components Hx, Hy and Ez (TM case).  

The problem under study is show in Fig. 1. It consists in 
an office room (cross section) with a small omnidirectional 
quarter wave monopole inside, working as a transmitter of 
electromagnetic waves. 

Fig. 1. Mesh over the Room. Antenna transmitter (T – Star) and points of 
measurement (Rn – Circles).

For the construction of the numeric model corresponding 
to the room geometry, it was chosen a mesh containing 1200 
cells in x-axis direction and 945 cells in y-axis direction. We 
used square TLM cells with �l = 1,27 cm. The cell size was 
chosen in order to have good description of physical features 
as well as to ensure adequate spatial sampling.  

The constitutive electrical properties of room materials, 
taken from [4, 6] are listed in Table I.  

TABLE I. ELECTRICAL PROPERTIES OF MATERIALS

Material Permittivity 
r

permeability 
µr

Conductivity
(S/m) 

AR 1.0 1.0 0.0 
CONCRETE 5.0 1.0 0.0 

GLASS 4.0 1.0 0.0 
ALUMINUM 1.0 1.0 3.8E+07

WOOD 3.0 1.0 0.0 

The transmitter was modeled by a �/4 monopole antenna 
oriented in the z-axis direction. The carrier frequency was 
chosen to be 914 MHz and the antenna-radiated power was 
chose to be 1.0 watt. These are typical data of personal 
communication network (PCN) [2]. 

The antenna was excited with a gap voltage source (see 
fig. 2). The driven voltage source was then transferred into a 
sinusoidal time varying electric field polarized along the 
monopole axis with a uniform amplitude and phase over the 
gap. 

Fig. 2. Schematic representation of antenna and room’s plane. 

The mesh ends are open boundaries, and the TLM 
“matched” (absorbing) boundary condition described in [1] 
was used. The length of simulation time was dictated by the 

Gap
Metallic Plane 

Room’s plane 

Antenna

x

z
y

Ez 

x
y
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time required for the transient solution to decay, and for the 
steady-state solution to appear. 

Once the rms electric field values at the measurement 
points on the mesh are obtained by the TLM computation, the 
path loss at several points could be calculated by the electrical 
field ratio between the excitation (ET) and measurement 
points (ERn), as show in Fig. 1 and (1).  

�

�

�

�

�

�

�

�

�

nR

T
TLM E

EdBL log20)( , n = 1,2,…,10 (1)

Finally, to evaluate the TLM results, a comparison with 
the Statistical dn Path Loss Prediction method [2] was done. 

RESULTS

Figure 3 show the calculated rms electrical field levels 
inside the room. The electrical field strength at the excitation 
point was 475.06 V/m (attending the antennas characteristics 
data).

Fig.3. Electric Field distribution inside de room. 

The results of TLM Path Loss Prediction using (1) are 
listed in table II. Also, the Statistical Path Loss Method 
results are showing for comparisons. 

TABLE II – TLM RESULTS AND CALCULATIONS

Measurement 
Point

Transmitter 
Distance 

(m)

rms
Electrical 

Field (V/m) 

TLM Path 
Loss
(dB) 

Statistical 
Path Loss 

(dB) 
   

R1 2.60 5.25 39.13 42.34 
R2 4.02 3.54 42.65 48.51 
R3 9.08 2.03 47.38 59.35 
R4 10.48 1.32 51.12 62.98 
R5 6.56 1.91 47.91 50.38 
R6 5.60 3.26 43.27 49.01 
R7 6.43 2.82 45.97 52.60 
R8 9.88 0.99 53.62 57.61 
R9 13.00 0.67 57.03 58.70 
R10 9.57 0.86 54.86 60.80 

A more detailed discussion and other important results 
will be presented in the extended paper. 
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Abstract This paper describes a design of switched reluctance 
motor with rotor poles having inserted barriers. A shape of the rotor 
barrier leads to improvement of torque characteristics. As well, 
dimensional tolerances of the barrier directly affect electrical 
performances of the motor. Therefore, the torque characteristic 

prediction of the motor is accomplished by a combination technique 
employing Stochastic Response Surface Methodology and Moving Least 
Square Method.

INTRODUCTION

Switched Reluctance Motor (SRM) has some advantages, 
such as, a high speed, efficient variable speed and a high 
reliability. Therefore, an application of switched reluctance 
motors is recently received attention in various industrial 
fields. However, a SRM is strongly nonlinear and suffer from 
high torque ripple. Also, the torque per volume of SRM 
strongly depends on the designed shape of salient poles. This 
paper proposed a barrier type SRM, which is designed by 
inserting separated barriers in the rotor. Separated barriers 
lead the reduction of a torque ripple and the improvement of 
torque performances. What is more describing in this paper, 
dimensional tolerances of electric machines can effect on 
electrical performances, and besides, the larger tolerance in 
manufacturing processes, the lower it is to cost of 
manufacturing electric machines [1]. A design of the barrier 
type SRM needs allowance for dimensional tolerances on 
especially barrier part of the SRM, beacuse of limitations on 
the manufacturing , measuring precision and so on. 

Therefore, the design techniques are required to find the 
tolerance band of design variables in order to minimize the 
cost and satisfy required performance. The torque 
charectristic, according to tolerances of the dimensional 
barrier, of barrier type SRM is predicted by using Stochastic 
Response Surface Methodology (SRSM). SRSM can be 
illustrated as an extension of  Response Surface Methodology 
(RSM), and it is then combined with Moving Least Square 
(MLS) to ehance the accuracy of stochastic response 
modeling in SRSM.  

STRUCTURE OF BARRIER TYPE SWITCHED RELECTANCE MOTOR

Fig. 1 shows the proposed barrier type 8/6 SRM, which is 
designed to improve torque characteristics. With a proposed 
rotor inserted the flux barrier, the motor characteristics

seriously vary according to the shape of flux barrier. 
Therefore, the geometric shape design of the barrier is 
required to find the design variables that consider 
manufacturing tolerance as well as improve the performance 
and exactly predict the torque characteristics. These 
tolerances can affect the machine performance, such as 
operating efficiency. 

FRAMEWORK FOR TOLERANCE ANALYSIS

Stochastic Response Surface Methodology 

In the SRSM, a relationship of the uncertainty between 
the outputs and inputs is addressed by the series expansion of 
standard normal variables in terms of Hermite polynomials. 
The output function can be approximated by an polynomial 
chaos expansion and the approximation is sampled to 
calculate a statistical distribution of outputs as described in 
[1]. 

Moving Least Square Method 

Unknown coefficients of the Stochastic response modeling 
are estmated by MLS method. The main idea of the MLS 
method is that a whole approximation Uh(x) of a sampling 
space can be accomplished by going through a moving proess 
and written as follows [2]:

T 1
I I I( ) (0) ( ) ( ) ( )

N
h

j=1

U x  = x x x x xP M P W U  (1) 

T( ) ( )x xM P W P=  (2) 

where W is weight function having form of a quartic spline, P
and U are composed with a set of sample point regarding 
design variables and outputs, respectively. 
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Tolerance (+ xi)Tolerance (- xi)

xi - n xi xi + n xixi

Fig. 2. Tolerance band of design variables 

Introductory Statistics for tolerance Analysis 

A variation band of design variables with assuming the 
distribution of a normal distribution is show in Fig. 2. In this 
symmetrical distribution, the tolerance band of design 
variables is easy to quantify in terms of the percentage of the 
area that will occur between one, two and more standard 
deviation from the mean as follows [1]; 

( )±x = n n = 1, 2, 3,    (2) 

Modeling variation of outputs according to tolerance of 
design variables is built by the SRSM. From a set of N 
samples, the basic moments of the distribution of an output yi

can be calculated as follows;
1

E { } =
i

N

y i i, j
j=1

 = y y
N

µ   (3) 

2 2 21
E {( ) } ( )=

i i i

N

y i y i, j y
j=1

 = y y
N 1

µ µ   (4) 

2

i iy y =    (5) 

where, yi is a mean, 2
y   i is a variance and yi is a standard 

deviation, respectively. 

RESULTS AND DISCUSSION

Fig. 3 shows the torque profile of one stroke of the 
proposed motor, the electromagnet field within the motor is 
computed by using the two-dimensional finite element 
method (2D-FEM). And then the manufacturing process is 
running at the design variable tolerance of 10 (%) based on 
the six-sigma level. The variation of the outputs is distributed 
as shown in both Fig. 4 and Fig. 5, which are concerned about 
both the average torque and the torque ripple, respectively. In 
order to reduce the scatter of outputs from their population, 
design variables need to be regulated at a tighter tolerance 
than 10 (%). 

CONCLUSIONS

In this paper, the barrier sailent pole applied to the rotor of 
conventional SRM to a enhancement of the torque 
performance, and it is then accomplished by tolerance 

analysis to predicte torque variations according to the 
geometric shape of the barrier.  Tolerance analysis is 
achieved by SRSM combined with MLS method. From the 
result, proposed approach will provide a great potential for 
improving robustness of production and reducing production 
cost. In full paper, more detailed descritions of tolerance 
analysis will be presented.
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Abstract � This paper deals with the loss analysis and efficiency 
evaluations in a synchronous reluctance motor (SynRM) using a coupled 
transient finite element method (FEM) and Preisach modeling, which is 
presented to analyze the characteristics under the effect of saturation 
and hysteresis loss. The focus of this paper is the efficiency evaluation 
relative to hysteresis loss, copper loss, etc. on the basis of speed, load 
condition in a SynRM. Computer simulation and experimental result for 
the efficiency using dynamometer show the propriety of the proposed 
method. 

I. INTRODUCTION

In high-speed applications, hysteresis loss can become the 
major cause of power dissipation. Therefore, whereas in other 
kinds of machines a rough estimation of hysteresis loss can be 
accepted, their importance in a SynRM justifies a greater 
effort in calculating them more precisely. The Preisach model 
is now generally accepted to be a powerful hysteresis model, 
and is therefore intensively studied [1]-[3].  

Some papers which discussed the influence of hysteresis 
loss on a machine have been presented.  

Reference [4], [5] have been investigated the steady state 
characteristics of inductances etc. using coupled FEM & 
Preisach modeling in a PMASynRM. Reference [6], [7] have 
been developed the transient analysis method coupled with 
vector control algorithm in a LIM and a SynRM respectively. 

Reference [8], [9] have been discussed the hysteresis loss 
influence on the transient behavior of a SynRM and which 
have the coupled control algorithm & the analysis method.  

Reference [10] have been proposed the control algorithm, 
which selects appropriate stator d, q-axis current component 
combination that the influence of iron core loss on the 
developed torque can be minimized in torque control, by the 
coupled finite element analysis and Preisach modeling in a 
SynRM.  

In this paper, a coupled finite element analysis and 
Preisach modeling for a SynRM are presented and dynamic 
characteristic analyses are performed under the effect of 
saturation and hysteresis loss. The focus of this paper is the 
efficiency evaluation relative to hysteresis loss, copper loss, 
etc. on the basis of speed, load condition in a SynRM. 

Also, TMS320C31 DSP installed experimental device and 
dynamometer are equipped and experiments are performed.  

Computer simulation and experimental results for 
efficiency show the propriety of the proposed a coupled finite 
element analysis and Preisach modeling method. 

II. COUPLED FEM AND PREISACH’S MODELING

Coupling governing equation and circuit equation, the 
system matrix is given as follows: 
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Where, { }E : emf. vector in the winding, { }V : Supplying 
voltage vector, { }I : Phase current vector, [ ]L0 : Leakage 
inductance, [LG]: Coefficient matrix related to emf, {M}: 
Magnetization calculated by Preisach modeling  

Fig. 1 shows the simulation scheme for the proposed 
analysis method. The torque acting on SynRM at each time is 
calculated by the line integral of the Maxwell stress tensor.  

Fig. 5 Block diagram of analysis system 

III. RESULT & DISCUSSION
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Fig. 2 i-��loci in each load condition at 2000 rpm 

TABLE I 
LOSS EVALUATION IN SIMULATION AT 2000 RPM

load 
(kg-cm) 

ouput 
(W) 

Hysteresis 
loss
(W) 

Copper 
Loss
(W) 

mechanical 
loss
(W) 

the 
rest 
loss
(W) 

phase 
current 

(A) 

6 122 13.70 4.7 5 4.6 2.2 
8 163 12.96 9.03 5 8.01 2.7 

10 204 9.92 15.65 5 15.4
3 3.68

12 244 16.02 25.61 5 21.3
7 4.7

TABLE II
EFFICIENCY EVALUATION IN EXPERIMENTAL TEST AT 2000 RPM

Load 
(kg-cm) 

input 
(W) 

output 
(W) 

Efficiency 
(%)

q-axis 
current 

(A) 

phase 
current 

(A) 

current 
angle 
(deg.) 

6 150 122 80 2.35 2 39.2 
8 198 163 82 2.8 2.77 47.9 

10 250 204 83 3.3 3.65 55.2 
12 312 244 78 3.9 4.7 61.5 
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Fig. 3 Efficiency in each load condition 
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Fig.2 shows the i-� loci per 1 cycle in each load condition 
at 2000 rpm. 

The hysteresis loss can be calculated by the area of the i-�
loci times the frequency (66.7 Hz), and the copper loss can be 
calculated by the resistance times rms value square of phase 
current. 

The mechanical loss is about 5 (W) in each load condition, 
which is experimental data. 

The rest losses are the eddy current loss and the stray load 
loss, etc. These losses are denoted in TABLE I.  

Output powers in simulation are the same with that 
developed in experimental test. Therefore, phase currents are 
similar to the experimental phase current as shown in TABLE 
II.

Fig.3 shows the efficiency of each load condition.  
It is confirmed that the maximum efficiency current angle 

(55.2o) is deviated from ���45o, as shown in Fig. 3. 
Fig. 4 shows the each loss ratio to the total loss in each 

load condition. Whereas in copper loss increasing current due 
to the increasing load should be enlarged, their rate in a 
hysteresis loss should be minimized in maximum efficiency 
condition precisely.  

Through the more detailed analysis and experiment for the 
another speed (rpms), the variable comparisons for 
performance of the SynRM will be represented in next 
extended version 
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Abstract - This paper deals with the stator design of a synchronous 
reluctance motor (SynRM) with concentrated winding by loss & 
efficiency evaluations related to slot numbers using coupled Preisach 
modeling & FEM. 

The focus of this paper is the stator design relative to torque density 
and efficiency on the basis of stator slot number and teeth width in a 
SynRM.  

The coupled Finite Elements Analysis (FEA) & Preisach model have 
been used to evaluate the nonlinear solution.  

Comparisons are given with characteristics of SynRM according to 
stator slot number, teeth width variation, respectively 

I. INTRODUCTION

Synchronous reluctance motor (SynRM) has a simple 
structure, rugged characteristics and high efficiency because 
of negligible rotor loss. It doesn't have rotor winding and 
rotates at synchronous speed, so the controller is simpler than 
other types of AC machines. Many works have been carried 
out in the field of SynRM rotor design because they have 
many advantages [1]-[7].  

If stator windings of a SynRM are not a conventional 
distributed one but the concentrated one, the decreasing of 
copper loss and decreasing of the production cost due to the 
simplification of winding in factory are obtained.  

However it is difficult to expect a good performance from 
concentrated winding SynRM without considering the defects 
of torque ripple, lower inductance ratio and difference 
(efficiency, power factor), etc.  

This paper deals with the stator design of a synchronous 
reluctance motor (SynRM) with concentrated winding by loss 
& efficiency evaluations related to slot numbers using coupled 
Preisach modeling & FEM. 

The focus of this paper is the stator design relative to 
torque density and efficiency on the basis of stator slot 
number, teeth width, in order to improve performance and 
production cost problem of a SynRM.  

The coupled Finite Elements Analysis (FEA) & Preisach 
model have been used to evaluate the nonlinear solution [8]-
[10].

Comparisons are given with characteristics of normal 
distributed winding SynRM(24 slot) and those according to 
stator slot number, teeth width variation in concentrated 
winding SynRM(12, 6 slot), respectively. By means of these 
structures, anisotropy ratios up to 8 or more are obtained and 
the consequent torque performance approaches that of state of 
the art (distributed winding SynRM : 24 slot).  

II. ANALYSIS MODEL AND DESIGN

A. Governing Equation of SynRM  

The governing equation can be written as 

�0 0( )� �� � �

� �

A J +
�

Jm                         (1) 

Where, mJ is Equivalent magnetizing current 

B. System Matrix

The system matrix can be written as  
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���                 (2) 

where, K c c d dij
e

e

e ie je ie je
( )

( )

( ) ( )� �

�0
4�

 , F
Ni
Si

e e( ) ( )
� ��

3

M M d M ci
e e

x
e

ie y
e

ie
( ) ( ) ( ) ( )( )� ��0

The overall model is described by following matrix.  
0}M{}F{}A]{K[ ���                          (3)

Where, the magnetization {M} is calculated by preisach 
modeling. 

The study concerns the SynRM with rotor flux barriers 
that present, respect to the axially laminated one, a simplicity 
in the mechanical construction, lower manufacturing cost, and 
the rotor skewing possibility. 

Fig. 1 show the general shapes of distributed and 
concentrated winding SynRM. Starting from a standard motor 
of distributed winding SynRM, several optimized designs 
have been found according to design strategy of Fig.2.  

Fig. 3 show the d-axis flux plots of distributed (24 slot) 
and concentrated (12, 6 slot) winding SynRM, respectively. 

     (a) distributed winding        (b) concentrated winding  

Fig. 1 general distributed and concentrated winding SynRM 
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Fig. 2 flow chart of design procedure 

(a) distributed winding (24 slot) 

(b) concentrated winding (12 slot) 

(b) concentrated winding (6 slot) 

Fig. 3 d-axis flux plots of distributed and concentrated winding SynRM 

In this paper the slot number of a SynRM is considered 
those of 24 (distributed winding: 36 turn/slot), 12 and 6 
(concentrated winding: 144 turn/ slot). The number of slot is a 
variable, which is related to torque ripple production together 
with the number of flux barrier.  

And the number 24, 12, and 6 of stator slot is considered, 
because it is limited by mechanical and electrical constraint of 
3 phase motor.  

The shape coordinates of stator slot and teeth have been 
drawn as a condition from open to closed slot, symmetrically.  

And then new CAD file is redrawn with regard to the 
change of slot and teeth width automatically as shown in fig.2.  

Next the process of automatic mesh generation follows.  
In mesh generation, mesh data doesn’t change node 

number, element number, region, boundary condition, etc., but 
only x, y-coordinate data of stator slot and teeth at same slot 
number.  

In this way the proposed Pre-processor procedure can be 
performed in a short period of time.  

The comparison between present value and the past one 
for loss and efficiency evaluation are performed. And if past 
value is larger than the present one, number of slot will be 
changed. This procedure is going on until the moment 
mechanical constraint of machine is reached. 
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Abstract - This paper presents the static characteristics of the linear 
BLDC motor. An equivalent magnetic circuit model is derived for the 
prototype motor. The air gap flux density is calculated using the 
derived model and compared results from Finite Element Analysis. The 
thrust force is measured for the prototype motor and is also compared 
with those from derived circuit model and F.E.M. These values agree 
well to show the validity of the equivalent circuit model. Using this 
equivalent circuit model, the thrust density variation according to the 
rate change of width of coil to pole pitch can be expected for the design 
purpose.

INTRODUCTION

Linear BLDC motors are used widely for the purpose of 
precision speed and position control [1,2,3,4]. Moreover, the 
linear BLDC motor has less backrush and friction, so it can 
be used as a part of micro incremental motion control system 
with help of microprocessor and power electronics. 
Therefore, linear BLDC motor can broaden its usage in the 
area such as wafer stepper stage in the semiconductor 
industry. This paper deals with the static characteristics of 
linear BLDC motor for the future application in the 
semiconductor industry, where incremental precision control 
is needed. An equivalent magnetic circuit model [5] is 
derived to calculate the air gap flux density and thrust force. 
For the prototype linear BLDC motor, the static 
characteristic parameters such as the air gap flux density and 
thrust force are calculated and compared with those from 
measurements and F.E.A. These values agree well to show 
the validity of the equivalent magnetic circuit model.   

ANALYSIS MODEL

The linear BLDC motor dealt in this paper consists of the 
stator and mover. The permanent magnets are mounted on 
each side of the stators for the magnetic flux to direct 
oppositely as shown in Fig. 1(a). The three phases windings 
on the mover are located to avoid overlapping each other. 
Fig. 1(b) shows the cross-sectional view, where � , �  are 
length of pole pitch and air gap, mh , mw are height and width 
of magnet, and ch , cw  are height and width of one-side 
section of the coil. 
Fig. 2 represents a part of the equivalent magnetic circuit 
considered for analysis, where m�  is the magneto-motive 
force of magnet.  Here, mR  and gR  are reluctance of magnet 

and air gap, respectively. 
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Fig. 1. Analysis model  (a) 3-D model , (b) 2-D modeling for analysis 

THEORETICAL CONSIDERATIONS
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Fig. 2. An equivalent magnetic circuit along a loop 

The air gap flux density gB  can be written as in Equation (1).  
2

2
g r m

g
m m m

B h
B

A h
�

� �

�

� �

�

(1)

The reluctance of yoke, yR  in Fig. 2 is neglected in the 
above equation. since it is assumed to be infinitely 
permeable. In Equation (1), m�  is relative permeability of 
magnet and mA  is area of magnet (where m m mA l w� � ).
The thrust force of the coil can be derived from Equation (1) 
and can be written as follows, 
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where J is current density of the coil, condl  is length of the 
coil conductor along z-axis and wA  is cross-section area for 
one-side of the coil 

DESIGN AND RESULT OF ANALYSIS

1. Prototype Model  
The photograph of the prototype BLDC motor used in this 
paper is shown in Fig. 3 and Table I shows the model 
dimension. The 3-phase coils sit on the mover and the stator 
has Nd-Fe-B PM on each side. Pole pitch is 60 [mm] and air 
gap is 10 [mm].

Fig 3. Prototype linear BLDC motor 

TABLE I. MODEL DIMENSION
 SYMBOL VALUE

Br 1.2 [T] 
wm 58 [mm] 
lm 80 [mm] 
hm 10 [mm] 

PM 

�m 1.05
Turns 162 [turns] 
wcoil 10.7 [mm] Coil 
hcoil 7.56 [mm] 

Pole Pitch � 60 [mm] 
Air gap � 10 [mm] 

Conductor 
Length lcond 80 [mm] 

2. Results
The calculated magnetic flux density in the air gap using 
Equation (1) is about 0.78 [T]. The air gap flux density 
obtained from Finite Element Analysis is shown in Fig. 4. 
Theses two results show good agreement in the air gap as 
seen in figure. 
In Fig. 5, the measured thrust force of prototype motor is 
compared with those from equivalent magnetic circuit and 
F.E.M. In this case, the excitation current is 1 [A]. The thrust 
force obtained from magnetic circuit model agrees well with 
those from F.E.M. and measurement. Using Equation (2), the 
thrust density variation according to the rate change of width 
of coil to pole pitch can be expected for the design purpose. 
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CONCLUSION

This paper presents the static characteristics of the linear 
BLDC motor. An equivalent magnetic circuit model is 
derived for the prototype motor. The air gap flux density is 
calculated using the derived equivalent circuit model and 
compared with that from Finite Element Analysis. The thrust 
force is measured for the prototype motor and is also 
compared with those from derived circuit model and F.E.M. 
Using this equivalent circuit model, the thrust density 
variation according to the rate change of width of coil to pole 
pitch can be expected for the design purpose.  

REFERENCES

[1] R.Akmese and  J.F.Eastham, “Design of Permanent Magnet Flat Linear 
Motors for Standstill Application”,IEEE Trans. on Magnetics, vol. 28, 
No. 5, pp. 3042-3044,1992. 

[2] J.S.Moghani, J.F.Eastham, R.Akmese, and R.J.Hill-Conttingham, 
“Three Dimensional Force Prediction in a Model Linear Brushless DC 
Motor”,IEEE Trans. on Magnetics, vol. 30, No. 6, pp. 4752-4754, 
Nov.1994.

[3] S.X.Chen, T.S.Low, Y.A.Mah, and M.A.Jabber, “Super Convergence 
Theory And Its Application To Precision Force Calculation”,IEEE Trans. 
on Magnetics, vol. 32, No. 5, pp. 4275-4277, Sep.1996. 

[4] A.Basak, A.F.Flores, Filho,T.Nakata, and N.Takahashi, “Three 
Dimensional Computation of Force in a Novel Brushless DC Linear 
Motor”,IEEE Trans. on Magnetics, vol. 33, No. 2, pp. 2030-2032, 
Mar.1997. 

[5] J.F. Gieras and Z.J. Piech, Linear Synchronous motor, CRC Press, 2000 

171Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Design of Slotless Type PMLSM for High Power Density using Divided PM 
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Abstract � Slotless type PMLSM (Permanent Magnet Linear 
Synchronous Motor) has a low power density due to having a large air-
gap structurally. This paper presents an increase of power density of the 
slotless type PMLSM by inserted core between phase windings. The 
PMs(Permanent Magnets) are divided into two pieces to reduce detent 
forces and eliminate high order space harmonics affecting the ripples of 
a thrust. All analysis values are calculated using 2D FEM. 

INTRODUCTION

The slotless PMLSM is suitable for a precision machine 
demanded an accurate control capability due to a low normal 
force and a little existent detent force, but the motor has a low 
power density. On the other hand, a slotted PMLSM has a 
high power density, and it has bad control performance on 
account of having a high detent force[1,2].

Here, this paper proposes a inserted core type PMLSM to 
overcome demerits of the slotless type PMLSM and to 
improve its power density. But, a reluctance difference is 
produced in air-gap by inserting a core into a phase winding. 
And a constant force which is the best advantage of slotless 
type PMLSM does not obtained because a detent force exist 
by the slot-harmonics. The detent force makes ripple of force 
producing both vibration and noise of motors and 
deteriorating the control characteristics of speed control as 
well as of position control[3]. Therefore, this paper introduces 
concepts of a PWM in oder to eliminate the time harmonics, 
and a divided PM type of slotless LSM is proposed for 
removal of the 5th, 7th harmonics in the thrust.  

ANALYSIS MODEL

A Slotless type PMLSM and The Proposed Model for High 
Power 

Fig.1.  The analysis model of slotless type PMLSM 

Fig. 1 shows the analysis model of a slotless type 
PMLSM. The armature stator is composed of an iron core 
with non-salient poles and concentrated windings. The 
slotless type has a low energy density than the core type 
because it has a large magnetic air-gap in structure. 

Fig.2.  The proposed model. 

In this paper, to supplement demerits of the large 
magnetic air-gap, the model with the inseted core among the 
phase windings is proposed as shown in Fig.2. And, it 
presentes the divided PM model to reduce thrust ripples. Here, 
to eliminate the 5th, 7th space harmonics component of the 
thrust affecting the thrust ripple, noise and mechanical 
vibraion, the arrangement angle of the PM is =6/70 and 

=34/70  as shown in Fig. 2. In this part, is the pole pitch. 
Analysis models are calculated using 2D FEM. 

ANALYSIS RESULT

Back-E.M.F and Inductance 

The Back-E.M.F is computed by changing of a flux linkage 
in coils that is calculated by integrating y-component among 
the flux densities of PM. 
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Fig.3.  Back-E.M.F (v=2m/s) 

Fig.3 shows the calculated results of back-E.M.F in each 
analysis model. As you see, the r.m.s value of back-E.M.F 
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increases highly about 238% from 49.03V in slotless type to 
117.17V in inserted core type.  
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Fig.4.  Higher harmonics component of back-E.M.F in each model. 

Fig.4 shows the analysis results of harmonics component of 
back-E.M.F in each model. In inserted core model, the 5th 
and 7th harmonic component increase highly. But, these are 
eliminated in 2 divided PM model. 

Inductance is calculated using the energy perturbation 
method. As results of analysis, the values of self and mutual 
inductance in slotless type are 30.86mH, 9.08mH. However, 
those values in inserted core type severally increase to 
69.45mH and  39.93mH due to decreasing of magnetic air-
gap as the core is inserted. 

Detent force and Thrust 
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Fig.5. The calculation results of detent force 

The detent force is generated by difference of the 
reluctance generated by a disproportion of the magnetic air-
gap in the inserted core type. The detent force is calculated 
using the Maxwell stress tensor method. Fig.5 shows the 
results of analysis in each model. The detent force 
corresponding to 6th harmonics component of the thrust is a 
harmonic component which generates because of the teeth-
slot structure. Peak value of the detent force is sharply 
decreased to 30% from 55N in inserted core type to 16.5N in 
divided PM type. 

The force is calculated using the Maxwell stress tensor 
method, and Fig.6 present the thrust of each model. The thrust 
of the inserted core model increases more than twice over in 
comparison with it of the slotless model. The thrust of the 
inserted core type includes ripples somewhat owing to 
generating the detent force as inserting the core. The 5th, 6th 
and 7th components of harmonic generate in inserted core 
type, as shown in Fig.7. In case of the 2 divided PM type, the 
6th harmonics component of thrust decrease and the 5th, 7th 
harmonics components are eliminated. And this type have not 
particular influence on the control characteristic of the motor 
since the rate of harmonic is less than 2% in comparison with 
fundamental component.   

Fig. 8 shows the force in steady state operation when the 
electrical load angle is 90 degrees. The ripple of thrust 
generates as the core is inserted, but it reduces to 3% as the 
PM is divided. This means that the ripple of the thrust in the 2 
divided PM type doesn’t bad affect the running characteristic 
of motors. 
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CONCLUSION

In this paper, the inserted core type is proposed for high 
power density in the slotless PMLSM, and the 2 divided PM 
type is proposed to reduce the ripple of thrust. In the proposed 
model, the 6th harmonic component affecting the ripple of the 
thrust originates very small. Also, the thrust improves to 
226.7% from 425.16Nf in the slotless type PMLSM to 
964.36Nf in the 2 divided PM type. 
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Abstract � This paper shows the Minimization of  detent force for 
Permanent Magnet Linear Synchronous Motor(PMLSM) using the 
moving model node technique and the neural network. Design 
parameters are permanet magnet(PM) width, slot opening width, teeth 
width. Output parameters are thrust, detent force and inductance.  
Restricted conditions are selected for a thrust with 1250[Nf] overs, 
minimizations of detent force and inductance with 52.5[mH] below in 
order to make a power factor with 0.9 overs. 

INTRODUCTION

ecently, PMLSM with high energy density have been 
used in a wide variety of industrial applications such as 

robotics, power string and high-precision position control.   
But, Detent force is arisen from magnet end and a tooth 

position in PMLSM. It is cause of thrust ripple, noise, 
vibration, and deterioration of a performance of position 
control[1]. Therefore, design techniques were demanded to 
reduce detent force in PMLSM. There are detent force 
minimization techniques such as varying the PM width, 
rearranging the PM position, and using semi-closed slot 
structure by using Finite Element Analysis(FEA). 

In this paper, detent force and the thrust are calculated 
according to changes of PM width, slot opening and teeth 
width. And then, model is designed with parameters when the 
detent force becomes the minimum. Thrust must become 
1250[Nf] overs and inductance does belows 52.5[mH] in 
order to make a power factor with 0.9 overs. Analysis 
methods are FEA in combination with Moving model node 
technique and neural network. The former cuts down 
modeling time and effort as compared with FEA. Moreover, 
the latter is used to reduce computational time of analysis 
according to changing design parameter.

ANALYSIS METHOD

Moving Model Node Technique 

In this paper, the thrust and the detent force were calculated 
with FEA in combination with moving model node technique. 
The moving model node technique is used to create models 

with respect to the changes of the physical parameters of 
analysis model without additional pre-processing. Using this 
method, modeling time is greatly reduced and pre-processing 
is simplified[2]. Table.1 shows specifications of initial 
PMLSM. Fig.1 shows Flowchart of FEA with moving model 
node technique, and Fig.2 is Application of moving model 
node technique. 

Table. I.  Specifications of initial PMLSM 
Item Symbol Value (unit) 
Pole pitch � 69.0 (mm) 
Pole Number p 14
Slot pitch �s 11.5 (mm) 
Slot width ws 6.5 (mm) 
Rated current I 3.0 (A) 

Stator 
(Primary) 

Slot/pole/phase Q 2
Height H 10 (mm) 
Width wPM 55 (mm) 
Material Nd-Fe-B 

Mover
(PM) 

Residual induction Br 1.12 (T) 
Mechanical airgap gm 5.0 (mm) 

Fig. 1.  Flowchart of FEA with moving model node technique 

(a) Slot shape model           (b) PM width model   
Fig. 2 Application of moving model node technique 

R
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Neural Network 

This paper is used back-propagation neural network 
model on multi-layer feed-forward neural network. Variables 
in input design include the width of PM, teeth and slot 
opening, while variables in output include thrust, detent force 
and inductance. The neural network has structure such as 3-
50-50-50-3. Data sets of training neural network is 126[3]. 

Restricted conditions are selected for a thrust with 1250Nf 
overs, minimizations of detent force and inductance with 
52.5mH below. PMLSM is used system which demanded 
frequent starting and stopping characteristic. Therefore, time 
constant  should be reduced as little as possible. And, power 
factor is limited to 0.9 overs since characteristics of power 
factor is very important. Now that the steady speed of initial 
model is 2m/s, driving frequency is 14.747[Hz]. Inductance is 
52.5[mH] when power factor is 0.9, because phase resistance 
of initial model is 9.825[�]. Thus, inductance is limited to 
become 52.5mH below.  

Fig. 3 shows structure of neural nework. 

Fig. 3 Structure  of neural nework 

ANALYSIS RESULTS

Table 2. Some outputs of neural network 
Teeth 
width
[mm] 

slot opening 
width
[mm] 

PM 
width
[mm] 

Thrust 

[N] 

Detent 
force 
[N] 

Inductance 

[mH] 
4.5 2 61 1252.37 1.91 51.56 
5 2 60 1248.52 2.21 52.12 
5 2 61 1252.50 1.80 52.12
5 2 62 1255.60 4.04 52.43 
5 3 61 1246.81 3.03 50.98 

5.5 2 61 1252.82 2.07 55.26 
6 2 61 1252.11 1.95 57.67 
Table 2 shows some outputs of neural network. 

Parameters of optimum model are selected when the width of 
teeth is 5[mm] and the width of slot opening is 2[mm] and the 
width of permanent magnet is 61[mm],

Detent force and Thrust 

The detent force and the thrust were calculated with 
Maxwell stress tensor. The analysis results for the initial 
model and the optimum model are shown in Fig. 4. For initial 
model, the maximum value of detent force is amounted to 
57.4[Nf], while it of optimum model decreases considerably 
to 1.8[Nf].  

Fig. 5 shows thrust for initial model and optimum model. 
The maximum value of the thrust is increase from 1252.5[Nf] 
to 1206.49 [Nf] compare with the initial model. Ripple of 
thrust get amaller  because of reduction of detent force.  
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Fig. 5. Thrust 

Inductance

In this paper, inductance was calculated using Energy 
Perturbation method. Inductacne increases in comparison 
with the initial model as shown in table 3. 

Table 3. Comparison of Inductance  
initial model optimum model 

Values [mH] 48.73  52.12 

CONCLUSION

In this paper, neural network is trained with design 
parameters like that permanet magnet width, slot opening 
width, teeth width. The thrust increases from 1252.5 [Nf] to 
1206.49 [Nf] and detent force decreases considerably from 
57.4[Nf] to 1.8[Nf]. Although, inductance in optimum model 
increases a little from 48.73[mH] to 52.12[mH], the power 
facter affecting to the driving charcterisitc of motors keep up 
0.9 overs. Therefore,  optimum model is expected to maintain 
a good  performance. 
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Abstract �This paper deals with the optimum design of slotless type 
Permanent Magnet Linear Synchronous Motor (PMLSM) via Neural-
Network. The method using neural-network takes shorter time to 
analyze than existing method of analysis using space harmonic field 
method. In this article, conventional models were analyzed with space 
harmonic field method and resulting data were given to neural network 
for running. To identify the reliability of optimized data, it was 
compared with the results of space harmonic field method, and the 
results corresponded to those of space harmonic field method.

INTRODUCTION 

The slotless type PMLSM does not generate detent force 
which may have bad effects on control. Accordingly, this type 
is often applied to systems requiring high precision control 
such as X-Y gantry. Because of large magnetic air gap, 
however, this type has a disadvantage of lower thrust than 
slotted type. Due to these characteristics, slotless type 
PMLSM requires an optimum design to maximize thrust. 

In order to calculate a distribution of an air gap magnetic 
field in the slotless type PMLSM, the space harmonic field 
method is more reasonable than the numerical analysis 
method such as a finite element method (FEM), because of 
their simple armature structure and non-saturation 
characteristics in a core. 

Neural network was introduced to calculate the optimum 
value of design. It was led to learning by the results of space 
harmonic field analysis. The optimum values obtained from 
neural network were compared with the results of space 
harmonic field analysis. By using neural network, the 
calculation time to get the optimum parameter could be 
remarkably shortened. Parameter in input design include the 
width of coil, coil inner and permanent magnet, while 
parameter in output design is thrust. 

ANALYSIS MODEL

Fig.1 shows a side view of a single-side of the moving 
magnet slotless type PMLSM. The dimensions and 
specifications are as shown in table 1. 

The space harmonic field method is very fast than FE 
method in case of non-saturation characteristics and simple 
constructions. The results of this method are good agreement  

N NS S

A A B BC C

N NS S

A AA A B BB BC CC C

Fig. 1. Analysis Model 

Table 1. Specifications of analysis model 

Parameter Values Parameter Values 
Number of poles` 12 Turns / Phase 650  turns 
Br 1.2  T Height of coil 11  mm 
Height of PM 12  mm Width of coil 12  mm 
Length of PM 73.5  mm Distance of coil 12  mm 
Width of PM 26  mm Phase current(max) 2.66  A 
Pole pitch 28.5  mm Length of air-gap 2  mm 

with FEM. Therefore the space harmonic method is widely  
used in the early design and characteristic analysis according 
to changing of design parameters. For an increase thrust, the 
conventional model is analyzed by the space harmonic 
method and the obtained data set to train Neural-Network.
The input parameters of Neural-Network are coil width, PM 
width and coil inner width, and the output is thrust. 

REDESIGN RESULT  USING NEURAL-NETWORK
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Fig. 2. Thrust distribution using Neural-Network 

Fig. 2. shows thrust distribution by changing of the PM 
width and the coil width when a load angle is 60 degrees. The 
thrust increases as expanding the PM width, but parameter 
limited by constructional conditions. By using Neural-
Network, the optimal thrust is 409.458[N] in case that the PM 
width, the coil width and the coil inner width are 28mm, 
16mm and 5 mm, respectively. 
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Result Analysis 

To confirm reliability of Neural-Network, result data 
compared with the space harmonic method result. Table 2. 
shows comparison between the Neural-Network result and the 
space harmonic method analysis. The result of Neural-
Network is very good agreement with space harmonic method 
result. 

Table.2. Thrust of the Neural-Network and the space harmonic field method 

Neural-Network Space harmonic Method 
Values  409.458 N 409.654 N 

CHARACTERISTIC ANALYSIS

EMF and Inductance 

Fig.3 shows the back-EMF waves of the conventional and 
the optimum model when a velocity of mover is 2m/s. Peak 
values of optimum model increase from 34.035[V] to 
39.07[V] because PM width in optimum model larger than in 
conventional model. The ratio of increasing EMF is about 
14.8 %. 
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Fig. 3. back-EMF ( v=2m/s ) 

In this study, inductance was calculated by linkage flux 
method. Experimental results of self and mutual in the 
conventional model are 29.38mH and 9.07mH, and 
calculation results of self and mutual inductance are 30.03 
mH and 9.07 mH, respectively. The Optimum model’s self 
and mutual inductance are 32.87mH and 7.67mH. As 
increasing the coil width, the self-inductance is increase but 
the mutual inductance is decrease. 

Thrust and normal force 

Fig. 4 and Fig. 5 show thrust and normal force according to 
load angle is 60 deg. The maximum value of thrust is 
increased from 428.671 N to 475.253 N, and the normal force 
of the optimal model is increased compare with the 
conventional model. However, normal force is little influence 
on operational characteristic of motor. 

Fig. 6 shows driving trust of the conventional model and 
the optimum one when the load angle is 60 degrees. The 
thrust in the optimum model increases highly, but occur 
ripples of the thrust. But that is not affect to the performance 
in the motor because the peak-to-peak value of thrust ripple 

corresponding to 0.6% of the fundamental thrust in the 
optimum model is very small. This peak-to-peak value of 
ripple is 2.5N. 
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Fig. 6. Thrust in steady state driving

CONCLUSIONS

This paper presented optimum design PMLSM with neural 
network. Design parameter were selected width of PM, coil 
and coil inner. To confirm reliability of Neural-Network, 
result data compared with the space harmonic method result. 
The result of Neural-Network is very good agreement with 
space harmonic method result. A little ripple occurred along 
with increased thrust, but it was ignorable enough to have 
little effects on control. Introducing neural network into space 
harmonic field method could shorten the time to calculate.
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Abstract—Based on the two-dimensional least squares algorithm,
this paper presents a novel numerical method to compute the magnetic
characteristics for switched reluctance motor drives. In this algorithm,
the coefficients of the orthogonal polynomials, which are used to
describe the magnetic characteristics, are determined by the
two-dimensional least squares technique. Furthermore, these
coefficients can be determined off line and trained on line. It is shown
that the computed and experimental results agree well. The proposed
algorithm is very helpful for torque prediction, simulation studies and 
sensorless control of switched reluctance motor drives. 

INTRODUCTION

Precise computation of the nonlinear magnetic
characteristics at an arbitrary rotor position and current is 
crucial when performance predictions, simulations,
computer-aided designs, torque control, as well as sensorless
control of the switched reluctance motor (SRM) drives are 
carried out [1]-[3]. However, the previous methods [1]-[3]
are obtained off line and hence could not describe accurately
dynamics of SRM drives. The nonlinear magnetic
characteristics in the SRM are functions of both rotor
position and current. To implement accurate simulations and 
real-time controls, the designers have to develop novel
techniques to calculate precisely the nonlinear magnetic
characteristics of the SRM both on line and off line.
Reference [4] presented a method based on artificial neutral
networks (ANN), which can be suitable for off line and on
line. In this study a novel method, which is based on
orthogonal polynomials and which can be applicable to both
off line and on line studies, is proposed to compute the
motor’s magnetic characteristics.

COMPUTATION MODELING

Modeling of Nonlinear Magnetic Characteristics

Assuming there are n m flux linkage values kj with
respect to the rotor position k with the currents ij being
known (k=0, 1, , n-1; j=0, 1, , m-1), the modeling of the
nonlinear magnetic characteristics in the SRM drives is
given by
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Determination of the Coefficients in the Model

For the rotor position , there are m polynomials as given
in (3). 
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From the least squares principle, one obtains
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The polynomials for an electrical current i are defined as
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where the summation of v(i) from v=0,1, ,q-1 are also
orthogonal polynomials and are determined by v=1, 2, ,
q-1.
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From the least squares principle, one obtains 

(12)

From the above modeling and the 2-D least squares
methods, the coefficients in (1) can be determined. The
detailed derivations will be given in the full paper [5][6]. 

Training the Coefficients

Off line The coefficients can be computed off line if
the n m flux linkage values of the n rotor positions and m
winding currents are obtained through either measurements
on existing motor or numerical computations.

On line The coefficients is determined generally off 
line using the static magnetization data. Due to the static 
nature of the solution, these coefficients are unsatisfactory in 
the dynamic operating regime of the SRM drives. However,
the above coefficients can be trained and corrected on line
for the dynamic range if the voltage applied to phase
winding, rotor position, and current are measured. The flux
linkage is computed from the voltage and current waveforms
using the trapezoidal method as given in (13). 

)]()1()()1([
2
1)()1( lrilrilVlVTll s  (13) 

where (l+1) and (l) are, respectively, the flux linkage
values at the sampling instants (l+1) and (l); V(l+1) and V(l)
are, respectively, the voltage values applied to the phase 
winding at the sampling instants (l+1) and (l); i(l+1) and i(l)
are the phase current values at the sampling instants (l+1)
and (l), respectively; r is the resistance value of the phase
winding and Ts is the sampling time.

It is seen that the proposed algorithm is similar to that of
the artificial neural networks (ANN) in respect of the
self-training features of the algorithms.

APPLICATIONS

13 rotor position data, 7 current data, and 13 7 linkage
data are obtained through the experiment (i.e., m=13 and
n=7). The maximum degree of the polynomials with respect
to rotor position is equal to 7 and the maximum degree of the
polynomial with respect to current is equal to 6 (i.e., p=8 and
q=7).  and i  in (1) are 15 degree and 6.0 A, respectively.

Fig.1 Comparisons between the experiment and the computation

Fig. 1 illustrates the comparisons of the phase flux 
linkage with phase current between the experiment and the 
proposed method. The comparisons of phase flux linkage

with respect to the rotor position angle between the
experimental and the proposed simulation results are given
in Fig. 2. 1,,1,0,/)(

1

0
pui

m

j
vjvujuv

It is clear from Fig. 1 and Fig. 2 that the experimental
curves of flux linkage agree very well with the computed
curves using the proposed method. The detailed analyses and
results will be seen in the full paper.

CONCLUSIONS

This paper presents a novel numerical algorithm to
compute precisely the nonlinear magnetic characteristics of 
SRM drives. The salient advantages of the proposed method
are that the modeling can be trained both off line and on line,
and that the nonlinear magnetic characteristics at arbitrary 
rotor position and current can be computed precisely.
Experimental results are used to validate the effectiveness
and accuracy of the proposed method. It can be seen that the
proposed method is applicable to performance prediction,
torque control, and sensorless control of the SRM drives,
regardless of whether the machine is operating at static or
dynamic state. 

Fig. 2 Comparisons between the experimental and the computation
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Abstract � Size optimization of Steel-Cored PMLSM(Permanent 
Magnet Linear Synchronous Motor) has been processed for realizing the 
rapid and smoth driving on short reciprocating trajectory by using 
Auto-Tuning Niching Genetic Algorithm. The varition of EMF and the 
detent force according to the size of teeth and magnets, and chamfering 
structure has been investigaed in detail. Furthermore, with the obtained 
design results, performance are compared with primitive one. 

INTRODUCTION

Steel-cored PMLSM generates more thrust force at given 
velocity than a conventional coreless one, which is mainly 
thanks to the existence of teeth. Such aspects make steel-
cored PMLSM close to the high-power application such as 
machining tool, semiconductor devices, and etc. Higher 
power density in linear machines implies the meaning of 
rapid driving in an acceleration mode, which occurs 
frequently in a short travel length. On the contrary, the 
existence of teeth itself could be the main cause of much 
force ripple, which is usually referred as a detent force and 
should be minimized for the smooth driving. Accordingly, the 
optimized structure meeting the requirements of such running 
conditions as rapid and smooth driving should be developed 
with the help of optimization process[1]-[3].  

In this paper, the size optimization of PMLSM under the 
fixed input power is done by using Auto-Tuning niching 
genetic algorithm which is embodied in clearing method, 
elitism and a deterministic method. In this method, the 
population size and niche radii of each elite individual are 
tuned up automatically[4]. Therefore without previous 
information about design target, optimal solution satisfying 
design aim of each application can be obtained. Only initial 
population size and the ratio of elite set size to population size 
are needed for optimal design process. 

One of outstanding solutions in minimizing the detent force 
is applying the chamfering which means the additional 
cutting off the teeth edges. As the chamfering ratio is higher, 
i.e. if the teeth are cut wider and deeper, the detent force 
decreases dramatically whereas the EMF constant directly 
connected to the actuating force will decrease accordingly. In 
addition, the variation of height of teeth and magnets under 
the fixed intermediate space is giving an influence each other, 
whereby the magnetic and the electrical loading could be 
divided successfully through the optimization. Applied 

optimization has been processed according to the different 
ratio of the chamfering and the different height of magnets 
and teeth. The performance of optimized model will be 
compared with the primitive one, focusing on the decrease of 
detent force and maintaining the EMF constant. 

Generally, input voltage limits the maximum velocity of 
mover, while input current manifests the feasible thrust force. 
The EMF constant( eK [V/(m/sec)]) will be effective for 
expressing the influence of an input power in case of steel-
cored PMLSM which corresponds to the conventional 
surface-mounted Permanent Magnet Machine. The variation 
of EMF constant proportional the detent force generation is 
remarkable, and it will be the significant criteria to the design 
of steel-cored PMLSM. 

OPTIMAL DESIGN OF STEEL-CORED PMLSM 

A. Design Variable, Objective and Constraints 

Fig. 1. Design variables in steel-cored PMLSM optimization 

As shown in Fig. 1, the design variables for optimization 
are hwmh CChS ,,, , while the width of magnets, slots and 
teeth are fixed in a sense that the pole pitch and the 
combination of poles and coils(4 poles and 3 coils) are 
already determined by desired output power and 
manufacturing feasibility. Number of coil turns will be 
automatically adjusted along the given space of slots, and the 
yoke and back-iron are sufficiently thick escaping from the 
saturation effect. As mentioned, the objective of optimization 
will be the ratio of eK  to the detent force, which will be 
aimed for rapid acceleration and smooth driving. In addition, 
the fixed intermediate length between yoke and the bottom of 
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magnets, 30[mm], will be the constraint to the variation of the 
slot and magnets height, and the chamfering ratio is 
arbitrarily changed only under the manufacturing easiness. 

B. Optimization Algotrithm 
In the design of electromagnetic device, the object function 

calculation time takes most of computing time. So it is 
important to reduce the number of object function calls. To 
reduce the number of object function calls, the niching 
genetic algorithm combined with deterministic method 
(Pattern Search Method) was proposed. Using Auto-Tuning 
concept, the population size and niche radii of each elite 
individual are determined automatically. 

The flow of auto-tuning niching genetic algorithm is as 
follows.  

Step 1 : (Initializing) 
N(initial population size) is determined. 
N individuals are generated at random. 

    The number of generation is set, i.e., g = 1. 
Step 2 : (Estimation of overlap) 

If dij < Li , the fitness of xj is set to zero.
   where, Li : niche radius of elite individual(Ei)

dij : distance between Ei and xj
Step 3 : (Pattern Search Method) 

Survivors of step 2 are moved to peak by pattern search 
method. 

Step 4 : (Determination of elite set and niche radii)
    Peaks searched on step 3 become elite individual. 
    Duplicate peaks are excluded. 
    The longest distance from survivors of step 2 to an elite 

individual becomes the niche radius of the elite 
individual. 

Step 5 : (Selection of next generation)
Population size of next generation is twice elite set size.  
(elite set + high fitness individuals among the rest) 

Step 6 : (Reproduction) 
They are crossed and mutated to produce population. 

Step 7 : (Determination of termination)
If g < Gn, g is set to next value and go to step 2. 

    If g  Gn, stop.    
    where, g : the number of generation 
                Gn : termination condition 

C. Design Results 
TABLE I. RESULTS OF OPTIMAL DESIGN

Specification Dimension  
Magnets Height 9 (8) [mm] 

Teeth Height 16 (17) [mm] 
Height 3 (1) [mm] 
Bottom width 3 (1) [mm] Chamfering 
Bottom height 3 (1) [mm] 

(data in a parenthesis are on the primitive one) 

Inherently, optimal algorithm produces the many seletable 
design candidates which are agreeable to the design objective. 

Proposed optimal design specification in Table I has been 
selected from the admissible design results based on the 
manufacturing feasibility of cost and easiness. 

PERFORMANCE COMPARISON WITH OTIMIZED PMLSM AND PRIMITIVE ONE

TABLE II. COMPARISON RESULTS OF PERFORMANCE

eK
[V/(m/sec)] 

Detent 
Force[N] eK /Detent 

Force 
Primitive 
PMLSM 36 231 0.156 

Optimized 
PMLSM 34.69 71.28 0.487 

(Rated current for continuous driving : 23.4[Arms]) 

Optimized PMLSM shows notably better performance than 
the primitive one, which holds twice as much. In considering 
the rated current for continuous driving(without concerning 
about temperature rise), thrust force decreased from 1786[N] 
to 1721[N], while detent force decreases approximately 70%. 
In addition, more magnetic loading(8->9) is distinguished to 
the electrical loading(17->16), where even the number of 
turns also decreases(200->186 with 1.0[mm] diameter of coil). 
Consequently, another design results can be generated if the 
width of magnets and teeth are taken into account, and the 
consideration of saturation, which is so significant in short-
time rating on the restricted track, will give the best answer to 
the desired aims and its ultimate running characteristics. 

CONCLUSION

In this paper, size optimization of steel-cored PMLSM 
using auto-tuning niching genetic algorithm has been 
performed, which produces optimal design variables 
manifesting the raped and smooth driving on required 
trajectory. Moreover, performance comparison of EMF 
constant and the decrease of detent force shows the 
effectiveness of optimally designed PMLSM to the primitive 
one 
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Abstract – A major problem of Switched Reluctance Motor 
(SRM) is torque ripple, which causes undesirable acoustic noise and 
vibration. It is caused by the geometric characteristic, that is, saliency 
of the stator and rotor. In this paper, the geometry for low torque 
ripple is researched and a motor having notched tooth is presented.

INTRODUCTION 

Recently, SRM is studied for high speed application 
because of its simple structure and development of power 
electronics. But a major demerit of SRM is large torque 
ripple, which produces acoustic noises and vibrations.  
Those are mainly produced by non-linear property of the 
inductance according to the current and rotor position [1]. 
To reduce the torque ripple of SRM, the optimization of 
control method and design of motor shape must be 
performed simultaneously. Studies for the former are 
performed, but that for the latter is relatively not much [2]-
[4].

General cause of toque ripple in geometry is fringing 
flux produced just before overlap of the teeth of stator and 
rotor. High current rise is caused in long period, and torque 
variation is produced consequently. In this paper, the new 
shape of rotor tooth is proposed, which reduces fringing 
flux and torque ripple. 

ANALYSIS MODEL 

Fig. 1 shows the analysis model and Table 1 presents the 
detail specification. 

Fig. 1 analysis model 

TABLE I. SPECIFICATION OF MODEL 

Rated Power 13.5 [kW] 
Rated Voltage 80 [V] 

Air gap 0.5 [mm] 
Rated Speed 1800 [rpm] 

Number of turn 10 [turn] 
Number of Pole (Stator / Rotor) 8 / 6 

Torque waveform at 1800[rpm] is shown in Fig. 2. The 
torque ripple in region A and B produces the noise and 
vibrations. The average torque of the motor is 86.4[Nm] 
and the ratio of torque ripple, 9.5[%], can be calculated by 
eq (1). 

Torque ripple 100
0

1

2

��

�
�

T

T
N

n
n [%]      (1) 

0T : average torque,  n : harmonic order  

Fig. 2 Torque waveform of analysis model 

The inductance profile of an ideal SRM is given in Fig. 3, 
in the figure, the inductance in the region prior to overlap 
teeth is constant, and the current is increased linearly and 
torque is not produced. But the actual inductance of the 
analysis model is not constant in the region prior to overlap 
teeth in Fig. 4. 

Fig. 3 Characteristic of ideal SRM 

Fig. 4 Characteristic of analysis model 
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The variation of the inductance in this region makes torque, 
which is the reason of torque ripple, and current non-linear. 
While the torque ripple is produced, the maximum torque 
in the overlap region is reduced. The variation of 
inductance is mainly caused by the fringing flux in Fig. 5. 

Fig. 5 Flux lines of analysis model 

DESIGN OF ROTOR POLE 

In this paper, to reduce the fringing flux prior to the 
overlap angle, the notched tooth of rotor in the forward 
rotating direction is proposed. And its flux lines and 
inductance are calculated by F.E.A and shown in Fig. 6. It 
is shown that the fringing flux is reduced in the proposed 
model in Fig. 6(a) and the inductance is similar to the ideal 
in Fig. 6(b). In order to find the optimum shape of the 
proposed model, some simulations are performed using 
F.E.A according to the position of the edge of the notch. In 
Fig. 7, the position of the edge of the notch varies from 1 
[mm] to 6[mm] horizontally and from A to G vertically. 

(a) Propose model’s flux line 

(b) Comparison of inductance waveform 

Fig. 6 Flux line and inductance profile of the propose model 

Fig 7. Design of rotor pole 

ANALYSIS RESULT 

Fig. 8 shows the analysis results of torque ripple 
according to shape of notch. The torque ripple is reduced 
about 4.1 [%] in the model of 2[mm]-depth and C-shape. 
Fig. 9 shows the torque waveforms in the initial model and 
the proposed model. It can be known that the torque ripple 
is improved in proposed model in the figure. 

Fig. 8 Torque ripples according to the shape of notch 

Fig. 9 Comparison of torque waveform 
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Abstract – The present paper deals with the determination of the 
end winding inductance of a permanent magnet linear synchronous 
motor. The methods to determine the inductances in 3D are given for 
both classical complementary formulations. In first step, an elementary 
cell of the structure is modeled and the results are analyzed and 
discussed. In the second step the complete structure is studied in 2D and 
3D with only scalar potential formulation. For this last step, the 
numerical results are compared with experimental ones. 

INTRODUCTION

Nowadays, the numerical approach, based on the 3D 
Finite Element Method (3D-FEM), is more and more used to
study electromagnetic structures as, for example, linear 
motors [1-2]. However, even if the calculation capacities are 
growing very fast, the study of electromechanical devices, 
when only little symmetry exists, remains heavy using a full 
3D package. Indeed, this increases the number of unknowns 
and consequently the computation time. Moreover, some 
other constraints have to be introduced when the motion is 
taken into account. Hence, it is still interesting to use 2D-
FEM while taking into account 3D effects. These ones, which 
must be principally taken into account, in the electrical 
machine studies, are the eventual skew of the teeth or the 
magnets, and the end winding effects. Previous studies 
showed that the skew effects could be considered, with 
accuracy, by the 2D-slide approach [3].  

In the case of end winding effects, one can determine, 
using 2D and 3D magnetostatic calculations, the end winding 
inductance (EWI). Then, this last is generally not affected by 
the non linearity of the material, it can be introduced into 2D 
model, in series with the armature resistance [4].  

In this paper, we determine the end winding inductances 
of a PMLSM. First, we introduce 3D approaches, which 
allow us to model the structure in magnetostatic case. The 
methods used to calculate the inductances and the EWI are 
also introduced [5]. Then, we apply the different approaches 
to determine the end winding inductance of an elementary 
cell and the one of the whole structure. The different results 
obtained are discussed. At last, we introduce it into 2D-model 
and we show that the results are in good agreement with the 
experimental ones. 

NUMERICAL MODELS

Formulations in term of potentials 
In the case of an electromagnetic system, the magnetostatic 

Maxwell's equations are written, on a domain "V" of 

boundary �, under the form: 
sjcurlh � with h�n=0 on �h (1)

0div �b  with b.n=0 on �b (2)
such as �h � �b = � and �h � �b = 0. In these expressions, h
represents the magnetic field, b the magnetic flux density and 
js the current density. In our development, the studied domain 
"V" is considered simply connected. Vector fields b and h are
linked by the constitutive relationship b=�h. To solve these
equations, we can use a formulation in term of scalar potential 
� (called �-formulation) with a source field hs or the 
formulation in term of magnetic vector potential a (called a-
formulation). 

In the case of the �-formulation, as the current density is 
expressed from the curl of magnetic field, the latter can be 
written: 

��� gradhh s  with hs�n=0 on �h (3)
The magnetic scalar potential � is then the unknown and the 
source field hs is defined by: 

ss jcurh �
(4)

The formulation in term of vector potential is obtained 
from equation (2) so that: 

bcurla � (5)
To impose the uniqueness of a, it is necessary to add a gauge 
condition. 
Flux linkage expressions 

We assume that the domain V has one inductor and we 
denote "i" the current. We also note that the current density 
distribution is assumed to be uniform in each cross section. 
Consequently, js in the inductor can be written as: 

is Nj �
(6)

where N is the vector of turn density. Its magnitude is given 
by the ratio of the number of turns to the winding section and 
its direction by its spatial orientation. As the current density, 
vector N is with divergence free. The flux linkage in a 
winding can be obtained by integrating, on the whole 
domain, the projection of magnetic vector potential on the 
vector turns density. Thus, we can write [4]: 

dv.
V

Na��� (7)

To determine the flux linkage in the case of �-formulation a 
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vector K is introduced under the form: curlK=N. Then, from 
equation (7) by permuting N with its expression in function 
of K and using Green formula, we can write: 

dv.
V

w curlaK
�

��
(8)

From equations (8) and (5) and considering the constitutive 
relationship and the expression of magnetic field (3) we can 
write the flux in function of K and � under the form:  

dv)gradi.(
V

w �����
�

KK (9)

Equations (7) and (9) permit to calculate the flux in the 
winding using both classical formulations. 
To compute flux �s flowing through a surface S defined by 
its contour �S we introduce the exploration coil. In the case 
of a-formulation the classical formula can be used: 

�
�

�

S

a
s d. la (10)

In the case of �-formulation we introduce vector K
�S [5]. 

This one corresponds to the source field vector created by a 
coil flowing by 1 A formed by the turn defined from contour 
�S. In these conditions, the flux through a surface S is given 
by: 

dv.
V

Ss � ��

�

� Kb (11)

From equations (10) and (11), the end winding inductances 
can be determined considering the flux trough an exploration 
coil. Another possibility is the calculation in 2D and 3D.  

NUMERICAL COMPUTATION

The machine studied is a permanent magnet linear 
synchronous motor (PMLSM) of 6.6kN, 45A, and 1.67m/s. 
The double layer armature windings, of 8 pole pair number, 
are disposed in 51 slots. To compute the EWI, we only 
consider the armature winding shown in figure 1.a. The 
complete structure will be modeled in 2D. 

Exploration
coil

Fig. 1.a Fig. 1.b 
Fig. 1. Structure studied (fig. 1.a) and definition of exploration coil (fig. 1.b). 

Using complementary solutions we study, in a first step, 
an elementary cell shown figure 1.b. We can see, in this 
figure, the definition of the exploration coil. For this cell the 
flux in the winding, for a current of 1A, has been calculated 
in 2D and 3D using both complementary formulations. To 
complete the study, the flux in the exploration coil has also 
been determined. The results are presented in Table I. The 
estimated flux corresponds to the difference between 2D and 
3D calculation. So the estimated end winding inductance 
must be compared with the results of exploration coil. 

TABLE  I. FLUXES ( 10-6 Wb) 
Formulation 2D 3D Estimated Exploration – coil 
A 1.849 1.954 0.105 0.094 
� 2.068 2.188 0.12 0.106 

As expected from complementary solutions, �-formulation 
gives values slightly higher than the ones calculated by a-
formulation. However, for both formulations, the fluxes 
calculated by the exploration coil are in good agreement with 
the estimated end winding ones.  

Now, we consider the whole armature winding. The mesh, 
which corresponds to the half part, is constituted of 220,000 
nodes and 690,000 elements. To limit the computation time 
the structure has been only studied with �-formulation. As in 
the case of the cell the flux has been calculated in 2D, 3D and 
with the exploration coil which defines EWI. The results 
obtained are shown in Table II.  

TABLE  II. FLUXES ( 10-3 Wb) 
2D 3D Estimated Exploration-coil 

7.28 7.68 0.4 0.39 

It may be noted that exploration coil flux is deduced easily 
from the one calculated in an unique exploration coil, placed 
in the end pole of the considered winding and multiplied by 
the pole number. Moreover, computations show that the end 
winding mutual inductances are negligible. 

To validate the model (2D+EWI), we have compared the 
results obtained by calculations in 2D and 2D+EWI to  
measures. Hence, a sinusoidal voltage supplies two-phase 
windings in series. Knowing the phase resistance, it is easy to 
obtain the cyclic inductance of the structure. The results are 
given in Table III. From this Table we can see that the result 
taken into account EWI is more accurate.  

TABLE  III. COMPARISON OF THE CYCLIC INDUCTANCES
Method Experiment 2D 2D+EWI 
L-M (mH) 8.51 7.64 8.12 

CONCLUSION

In this paper, we have studied the calculation of the end 
winding inductance of a PMLSM. In 3D two approaches 
have been introduced, the classical computation of 
inductance winding and the use of the exploration coil. In 
both cases, for an elementary cell the inductances have been 
determined using both complementary formulations. In the 
last step, the results obtained from 2D and 2D+EWI have 
been compared to the experiment. 
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Abstract � This paper presents two approaches for nonlinear 
dynamic modeling of voltage-driven magnetic circuits. The field 
approach is based on a FEM method; in 2D laminated cores an in-plane 
magnetic analysis is coupled with a 1D eddy current solution across 
lamination thickness. The circuit approach subdivides the magnetic core 
in flux tubes according to geometrical symmetries and solves the coupled 
electric and magnetic circuits. The two analysis methods are applied to 
the study of magnetic cores and comparisons between them and with 
experimental data are performed and discussed. 

INTRODUCTION

The simulation of magnetic cores under dynamic supply is 
important in different areas of applied research. The diffuse 
presence of ferromagnetic cores in electronic systems and 
their complex behavior under distorted flux waveforms is the 
reason for this need. Usually eddy currents present inside the 
cores are strongly reduced by means of lamination; 
nevertheless there are applications where eddy current effects 
cannot be neglected, as for example in high frequency supply 
or in axially-symmetric bulk structures. In all these cases a 
study that take into account induced eddy currents and their 
interaction with nonlinearities of the material is compulsory. 

Several analysis approaches can be devised to this aim 
starting from a thorough three-dimensional model of the 
structure to simplified ones [1], [2], [3]. While the first study 
would be for sure accurate, its complexity and computational 
cost is unacceptable, thus some simplifying considerations 
can be taken into account. In this paper two approaches with 
different degrees of accuracy are presented: a two 
dimensional finite element model of the core and a circuit 
based one. Both approaches have been adapted to the 
particular structure taking into account symmetries and 
engineering considerations.

FIELD APPROACH

The field approach is based on a 2D voltage-driven 
electromagnetic field formulation in terms of a magnetic 
vector potential A. Introducing FEM, linear shape functions 
are employed; for axial-symmetric problems, shape function 
are weighted by r-1 in all the regions far from the symmetry 
axis. The discretized problem uses as unknowns the nodal 

values of the magnetic vector potential and the branch 
currents of the supply circuits. The magnetic nonlinearity is 
exploited by the Fixed Point (FP) iterative technique. In 
laminated cores, the skin effect in the lamination depth is 
accounted for by coupling the 2D solution in the (xy)-plane 
with the 1D nonlinear diffusion problems defined in the sheet 
thickness (z-axis) [5]. 

CIRCUIT APPROACH

The analysis of eddy currents induced inside a 
ferromagnetic core can be approached by means of a 
magnetic equivalent circuit (MEC) if some electric and 
magnetic flux tubes can be defined. Taking into account the 
usual hypotheses of magnetic circuits study and geometrical 
shapes typical of the industrial applications, these flux tubes 
can be defined in easy way. Once the geometry of the flux 
tubes is known, electrical (resistance) and magnetic 
(reluctance) lumped parameters can be computed and a 
network built. The main conceptual difficulty of this process 
is the definition of an efficient interface between the electric 
and the magnetic domains. Different schemes for this aim 
have been proposed in the literature [2], [3], here a coupling 
based on a magneto electric differential gyrator has been 
adopted. The scheme of the coupled circuits is represented in 
Fig. 1. In Fig. 2 an axially-symmetric core subdivided in three 
magnetic flux tubes and two electrical ones is reported 
together with its lumped parameters representation. 

For complex structures, more than one block with eddy 
currents can be used and all blocks can be linked by 
topological relations and solved by means of some network 
solution algorithm. 

electric 
domain 

���� ����� �� ���� ����� ��

magnetic 
domain 

e(t)

R
�i(t)

dt
dN �

�(t)

RNi(t)

Fig. 1 Coupled electric and magnetic circuit: R
�

ohmic resistance of the 
electric circuit, N number of turns, R reluctance of the magnetic circuit. 
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Fig. 2 Axially-symmetric core and its circuital representation 

APPLICATIONS

Two test cases have been studied by means of the two 
approaches: an axially symmetric magnet and a laminated 
ferromagnetic core (Fig. 3). In the first case experimental data 
are available. 

The axially symmetric device is composed by a cylinder 
(internal core) surrounded by a winding, by a hollow cylinder, 
and by two disks representing the closures of the magnetic 
path. The upper disk (moving core) is supposed to remain in 
the closed position with a 0.45 mm air-gap. Several supply 
conditions are tried in order to change the saturation level of 
the core and its dynamical behavior. In Fig. 4 the comparison 
of the two approaches with experimental data are reported 
under sinusoidal supply. The FEM case has a mesh made of 
7940 elements, while circuit approach uses 9 blocks to model 
the magnetic circuit taking into account also leakage flux. 
Eddy current blocks are subdivided in 6 flux tubes. As it can 
be seen the agreement between supply currents is more than 
satisfactory. 

The 2D device is a C-shape electromagnet constituted by a 
laminated core (lamination thickness equal to 0.5 mm), with a 
0.4 mm air-gap. Each lamination is discretized along the 
thickness in 10 flux tubes. Sinusoidal voltage supply with 
frequency value of 5 kHz is applied. In absence of eddy 
current, the mean value of magnetic flux density will be �1.2
T, while, due to flux skin effect, the magnetic flux density 
reaches a peak value of �1.6 T, that results in a distortion in 
the current waveform. The two methods are found to be in 
satisfactory agreement. 

A deep comparison between the proposed approaches will 
be discussed in the full paper. 

(I)            (II) 
Fig. 3 Devices under study (dimensions in millimeters): (I) axisymmetric 
device, (II) C-shape device 
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Abstract – In the formulation with two magnetic vector potentials,
the inaccuracy of the Biot-Savart integration for the source term causes
the divergence of the conjugate gradient method. The ill-posed equations
are regularized by subtracting a rotational field from the numerically
integrated field. The convergence is drastically improved. Even when
the current continuity is not satisfied strictly we can get reasonable
results.

Index Terms - finite element methods, edge elements, two potential
method, reduced magnetic vector potential, ICCG convergence .

I. INTRODUCTION

In electromagnetic analyses using the Finite Element
Method, matching the discretization of complex-shaped
source coils with the rest of the mesh is a time-consuming
and difficult task. One method to avoid this burden is using
two potentials ( total and reduced potentials ) in different
regions and connecting the regions based on field
continuity[1]. In this case, the coils can be defined
independently from the FEM mesh. When the total and
reduced magnetic vector potentials are used with edge
elements, the accuracy of the Biot-Savart integration
becomes essential for ensuring the well-posedness of the
equations. One often encounters the divergence of the
conjugate gradient method (ICCG) due to the ill-posedness of
the equations in this formulation. Obviously, one can
improve the convergence by increasing the accuracy of the
Biot-Savart integration, but the computation for the
integration becomes time-consuming and impractical in the
engineering sense.

In this paper, a regularization method for the ill-posedness
of the equations in the two potential method is proposed.

II. TWO POTENTIAL METHOD

 In the two potential method, the total magnetic vector
potential

tA  and the reduced magnetic vector potential

rA are used for: regions (
tΩ ) which include conductive

and/or magnetic materials , and for the air region (
rΩ )

surrounding the total potential regions, respectively. For the
magnetic vector potentials , the edge element functional space
is used.

In the total potential region, usual A formulation is adopted
and the following equation is solved.

0
1 =+×∇×∇ tt AA σ
µ

    (1)

Current sources embedded in the discretized mesh can also be
included in this region, but for simplicity they are not

considered in the formulation presented here. We can adopt
here the A-φ formulation, that is equivalent to the A
formulation when using edge elements and which is known to
improve the convergence of the ICCG method.

In the reduced potential region, the equation

0
1

0

=×∇×∇ rA
µ

, (2)

is solved. At the interface ( trΓ ) of the two regions, the

following continuity conditions are applied.
nAAnA ×+=× )( srt

(3)

nHHnH ×+=× )( srt
.     (4)

Here, n is the normal unit vector on the interface.

tH ,
rH and

sH are the magnetic intensities of the total,

reduced and source field.
tt AH ×∇= µ1 ,

rr AH ×∇= 01 µ and

sH is given by Biot-Savart integration of the source currents

located outside of the total potential regions.
The Galerkin’s weak form is derived from these equations

as:

.

11

0

∫

∫∫

Γ

ΩΩ

⋅×=







×∇⋅×∇+





⋅+×∇⋅×∇

tr

tt

dS

dVdV

s

rt

nHN

ANANAN
µ

σ
µ (5)

Here, N is the weighting function represented by the edge
shape functions and includes the gradient of the scalar
functions. The condition (3) is enforced strongly. Equation
(5) must be satisfied when N is replaced by the gradient ω∇
of any scalar function in the allowable functional space. Of
course, the L.H.S. of the equation becomes zero, and the
R.H.S. becomes,

∫∫∫ +⋅×∇=⋅×∇
ΓΓ

dCdSdS sss

trtr

HnHnH ωωω (6)

In the R.H.S. of (6), the line integration appears when the
interface is open and becomes zero according to boundary
conditions and the surface integration becomes zero when the
source current does not flow through the interface. Thus,

σ µ

sJ

0µtA

rA

tΩ

rΩ

trΓ

n

Fig. 1. Analysis regions for two potential method
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ideally this substitution would make the R.H.S. of (5) to be
zero, so that (5) is a non-definite equation as usual in the
formulation using edge elements. But, when the integration
of the R.H.S. of (5) is not strictly accurate, the equation
becomes an ill-posed equation. In solving using the ICCG
method, it converges to some extent according to the
accuracy of the integration and finally diverges.

III. REGULARIZATION OF ILL-POSENESS

In general, the source field can be calculated by the Biot-
Savart integration as,

dV
r
s

s ∫
×=
3

rJ
H . (7)

In case of simple coil geometry, analytical expressions can be
used. However, for arbitrary coil shapes it is difficult and
time-consuming to perform accurate integrations Rather, it
would be preferable to be allowed to the accuracy of the
integration.

The R.H.S. of (5) can be regularized as follows. The source
field

sH on the interface is modified as,

nHH ×∇−= ϕss

~ . (8)

The following equation is imposed:

0
~ =×∇⋅×∇−⋅×∇=⋅×∇ ∫∫∫

ΓΓΓ trtrtr

dSdSdS ss nnnHnH ϕωωω

    (9)
and solved for ϕ, and 

sH  in (5) is replaced with
sH

~ .The

regularization potential ϕ is in the functional space of the

nodal scalar functions on the interface. Equation (9) is a
positive-definite symmetric equation and easily solved. This
procedure corresponds to subtracting the rotational field
component ( )nn ϕϕ ×∇=×∇ from the calculated field.

IV. EXAMPLE

One example of the regularization is shown. We consider
the model shown in Fig.2, where an iron core is magnetized
by a coil. The coil is simulated by 4 rectangular
parallelepipeds, overlapping on each other at sides. The
current continuity is not satisfied strictly.

In Fig. 3, the convergence processes are shown for the
cases with and without the regularization. Without the
regularization, the ICCG method diverges after reaching an
error of 3105.3 −× . With the regularization, it converges to

14103.1 −× , which probably is the numerical limit in the
double precision. In Fig. 4, the distribution of the
regularization potential ϕ is shown. In this example, the
magnetic fields resulted with and without the regularization
are almost identical, and the difference is in the order of the
minimum error in the ICCG iteration without the
regularization.

V.  Discussion

As shown in the example, using the regularization method

we can get a convergent solution even when the source
current continuity is not satisfied. We should note, though,
that the solution obtained by regularization might still reflect
the error caused by the inaccuracy of the source current
condition. The author is expecting that the regularization is
valuable in non-linear or transient analyses involving small
perturbations. More test computations and validation of the
method will be presented in the extended paper.
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Iron
(µ=1000)

Fig. 2. Model for test calculation. The iron core is shown for 1/8 region.

Fig. 4. Distribution of regularization potential

Fig. 3. Convergence of ICCG iterations with and without the
regularization.
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3D Eddy Current Analysis with the Cell Method
for NDE Problems 

Francesco Trevisan 

Abstract—An algebraic formulation has been developed for 3D 
eddy current problems, according to the Cell Method philosophy.
This formulation is presented in the frequency domain and it is 
based on the circulation of the magnetic vector potential along 
primal edges and on the electric scalar potential in primal nodes
of the conductors. It has been applied and validated respect to 
the solution of NDE TEAM problem 15. The flaw has been
modeled as a zero-thickness defect and the superposition of
effects and compensation theorem have been applied to compute
the impedance variation respect to the flawless configuration.

Index Terms— Eddy currents, NDE, Cell Method.

INTRODUCTION

I N Electromagnetic Nondestructive Evaluation (NDE) 
problems the development of analysis models for 

computing the field perturbation at the measurement probe
locations, due to the presence of a specified flaw, is a crucial 
issue. In recent years, several sophisticated computational
models have been proposed and applied for the solution of the
direct problem, based on  different approaches like Finite
Elements or Integral models [1-2]. In this paper the solution of
the direct eddy current problem has been tackled on the basis
of an alternative approach based on the Cell Method. Starting
from the general ideas of the Tonti’s Finite Formulation [3]
for electromagnetic fields, an algebraic formulation for 3D 
eddy current analysis has been developed, based on the
circulation of the magnetic vector potential a and on the
electric scalar potential V in the conducting region. The 
proposed numerical formulation is presented for linear
conducting media in the frequency domain and the flaw is
modeled as a zero thickness defect. As test problem, the
TEAM problem 15 has been considered to validate the
formulation and the obtained results, in terms of impedance
variations, have been compared [4].

According to the Cell Method, a tessellation of the 3D
space is considered based on oriented geometrical elements
like points, edges, faces, cells of a pair of cell complexes
K={ , , ,ph li s j vk } and K̃ ={ , ,ṽh s̃i ˜ ,l j p̃k } one dual of 
the other, endowed with inner and outer orientation
respectively; the bold face indicates that the geometrical
elements are oriented while the tilde denotes the outer
orientation. The cells vk are tetrahedral while the dual

complex K̃ is built from K according to the barycentric

subdivision. This means, in particular, that a dual point p̃k is

the barycentre of vk  and that a dual line ˜ is a broken line
between the barycentres of two contiguous tetrahedra sharing
a primal face s and passing through the barycentre of that
face. Analogously, also on the time axis, two mono-
dimensional cell complexes { , } and  {

l j

j

nt nT nT~ , nt
~ } can be 

introduced one dual of the other, made of primal instants,
primal intervals with inner orientation and of dual intervals,
dual instants with outer orientation respectively.

j

i
i

nT nT~

THE CELL METHOD FOR EDDY CURRENTS

A. Classification of physical variables
According to the Finite Formulation, the physical variables

can be distinguished in configuration and source variables and 
satisfy to the following fundamental property: configuration
variables are referred to space elements endowed with inner
orientation and so to the primal cell complex K, while the
source variables are referred to space elements endowed with 
outer orientation and so to the dual cell complex K̃ .
Therefore, the association of physical variables to the right
cell complex is univocally specified by the above principle.
For the case of eddy current problems, the physical variables 
vectors of interest and their association to the space elements
of a cell complex are reported in the following [5]:

V is the vector of electric potentials associated to primal
points ;ph
U is the vector of electric voltages associated to primal
edges ;li

 is the vector of fluxes relative to primal faces s ;

a is the vector of circulations of the magnetic vector
potential and is relative to primal edges l ;
I is the vector of electric currents across dual faces s̃ ;
F is the vector of magnetic voltages relative to dual edges

.l̃ j
As concerns the time association, it is convenient here to

regard the time axis as a continuum by taking the limit to zero
of the primal, dual intervals ,  in the time tessellation.
Therefore all the introduced global variables become
functions of a time instant t. Usually in NDE problems the
external impressed currents are sinusoidal with fixed
frequency and all the media are linear; therefore the 
formulation of the eddy current problem can be cast directly in

Manuscript received November 1, 2002. F. Trevisan is with the Dep.
Ingegneria Elettrica, Gestionale e Meccanica, Università di Udine, Via delle
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the harmonic regime, considering the complex transformation
of the above vectors.

B. Physical laws and constitutive equations 
The physical laws for eddy current problems, in algebraic
form are: the Gauss magnetic law , with D the
incidence matrix between [

0D
vk :s j ], that is identically satisfied

when the flux is expressed as  with C the incidence 
matrix between [

aC
s j : li ]; the Faraday-Neumann law

VGaU j

li hp

 with G the incidence matrix between

[ : ], the Ampère law C IF~  with C TC~  and the

continuity law 0ID~  with D TG~ . These topological
equations are valid independently of the media and of the size
of  the cell complexes. The magnetic F  and Ohm

constitutive equations can be easily derived under the
hypothesis of uniformity of the fields and homogeneity of the
media within each tetrahedron. 

M
UNI

C. The algebraic equations 
Combining the physical laws with the constitutive equations,
different sets of equations can be written according to the
region considered: air, coil with impressed current or 
conductor respectively.  Precisely, in the air or in the coil we
derive:

IaCMC~ (1)
~

fS

with CMC symmetric, while in the conducting region we
have:

0VGNaNCMC ]~[ j (2)
~~ 0VGNDaNDj (3)

To get the unique solution in terms of a, V a primal tree 
elimination process must be performed together with the
elimination of a primal node in the conducting region; this
process is similar to the tree-cotree decomposition described
in [1, 6]. Null boundary conditions have been imposed on the 
external edges of the model.

SOLUTION OF THE DIRECT PROBLEM

The developed numerical formulation has been applied to the
solution of TEAM problem 15. To reduce the computational
effort, the flaw has been modeled as a zero thickness flaw 
represented with a surface  union of a number of dual

faces
fS

i S

s̃i ; therefore  is not a plane surface. The current 

relative to each dual face 
fS ifI

fs~ have been forced to zero. 

To this aim, (1) is written for the flaw dual faces with 
, while (2) gives no contribution on the flaw; (3) is

modified in order to account for . Of course the

proposed numerical formulation can be also applied to the
case of volumetric cracks. Then the superposition of effects
and the compensation theorems have been applied to compute
the impedance variation between the flawless 

plate impedance  and the defected plate impedance Z.

0ifI

0ifI

0ZZZ

0Z

3mm

86

2.

coil

flaw
(m)

(m)

(m) (m)

conducting plate

Fig. 1. On the left an isometric view of the coil primal mesh and of the 130 
dual faces modeling the flaw. On the right a side view of the coil and plate 
primal mesh, together with the surface of the flaw.

NUMERICAL IMPLEMENTATION AND RESULTS

The numerical implementation of the 3D eddy currents
code has been developed in MATLAB, with the advantage of 
good libraries and the drawback of limits in memory use and
run time, while the standard preprocessor of ANSYS has been 
used to create the primal mesh.

The test experiment No 1 at 900 Hz has been considered in
TEAM problem 15, where the flaw is a rectangular slot
(12.6 5 0.28 ) in a thick conducting plate. In Fig. 1 
the surface modeling the defect is shown together with the

primal mesh of the model. The number of tetrahedra of the
primal mesh is 3030, and the number of primal edges is 3671,
while 130 are the dual faces of .fS

As an example the variation of impedance computed with
the Cell Method when the coil is placed symmetrically above 
the defect (first position in the reference problem) is

,  while  the
corresponding measured variations are

, .

.0)(Re cellZ

0()Re( measZ

95.1)Im( cellZ

) 2()Im( measZ1.0 )2.02.

REFERENCES

[1] R.Albanese, G.Rubinacci, “Finite Element Method for the Solution of 
3D Eddy Current Problems”, Advances in Imaging and Electron Physics,
vol.102, pp.1–86, April 1998.

[2] R.Albanese, G.Rubinacci, F. Villone, “An Integral Computational
Model for Crack Simulation and Detection via Eddy Currents”, Journal
of Computational Physics 152, pp. 736-755, 1999.

[3] Tonti E., Finite Formulation of the Electromagnetic Field, Progress in 
Electromagnetic Research, PIER 32, 2001, pp. 1-42.

[4] S. K. Burke, "A Benchmark Problem for Computation of Z in Eddy-
Current Nondestructive Evaluation (NDE)," J. Nondestructive
Evaluation, Vol. 7, Nos. 1/2, 1988, pp. 35-41.

[5] F. Bellina, P. Bettini, E. Tonti, F. Trevisan, Finite Formulation for the 
Solution of a 2D Eddy Current Problem, IEEE Trans. Mag. Vol. 38,
March 2002, pp. 561-564.

[6] O. Biro, K. Preis, K. Richter, “On the use of the magnetic vector
potential in the nodal and edge finite element analysis of 3D 
magnetostatic problems”, IEEE Trans. on Mag, Vol. 32, pp. 651-654, 
1996.

191Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



A Dynamic Core Loss Model for Soft Ferromagnetic and Power
 Ferrite Materials in Transient Finite Element Analysis

D. Lin, P. Zhou, W. N. Fu, Z. Badics and Z. J. Cendes

Ansoft Corporation, 4 Station Square, Pittsburgh, PA 15219, USA
dlin@ansoft.com   ping@ansoft.com   wfu@ansoft.com   badics@ansoft.com   zol@ansoft.com

Abstract—A dynamic core loss model is proposed to estimate core
loss in both soft ferromagnetic and power ferrite materials with non-
sinusoidal flux waveforms. The computation is based on standard core
loss coefficients that are either directly provided by manufacturers, or
can be extracted from the loss curve associated with sinusoidal
excitation. The model is used to calculate the core loss in both 2D and
3D transient finite element analysis, and the results are compared with
measured data.

INTRODUCTION

It is still a challenging task to accurately predict the
magnetization losses under various waveforms of flux density
in the design of magnetic power devices such as inductors,
transformers and electrical machines. Many approaches have
been developed for loss computation in the frequency
domain. They can be separated into two primary groups: the
loss separation approach and the empirical approach.

The loss separation approach is widely used with magnetic
laminations. It breaks the total core loss Pv into static
hysteresis loss Ph, classical eddy current loss Pc, and anomaly
loss or excess loss Pe [1]

echv PPPP ++=
5.12 )()( memcmh BfkBfkBfk ++= β . (1)

From the coefficients kh, kc, ke and the parameter β, the total
core loss per unit volume Pv can be calculated in terms of
different peak induction Bm and frequency f in the frequency
domain. When this approach is applied in the time domain,
computing the eddy current loss and the excess loss is
straightforward, however, computing the hysteresis loss is still
difficult.

A well-known empirical approach often used with ferrite
materials was proposed by Steinmetz more than a century ago

βα
mmv BfCP = , (2)

where Cm, α and β are empirical parameters obtained from
experimental measurement under sinusoidal excitation [2].

Many time-domain hysteresis models have been developed
for instantaneous loss calculation during the last decades.
These are mainly based on the Jiles-Atherton model   [3, 4] or
the Preisach model [5].  Although these models describe
hysteresis phenomena quite well, their practical use is limited
by the high number of empirical parameters required, or by
the tremendous experimental effort required [6].

In this paper, an alternative dynamic hysteresis model is
developed for soft magnetic and power ferrite materials. This
model accurately predicts instantaneous hysteresis loss and

includes the effects of minor loops. The required parameters
in this model are the same as those required in the loss
separation approach (1) and in the Steinmetz equation (2).
These parameters are directly provided by manufacturers or
can be easily extracted from standard loss curves.

FORMULATIONS

The magnetic field H in a static hysteresis loop can be
decomposed into two components: a reversible component
Hrev and an irreversible component Hirr. As a result, hysteresis
loss can be computed by

∫ +=
T

irrrevh dt
dt

dB
HH

T
P

0
)(

1

∫=
T

irr dt
dt

dB
H

T 0

1 . (3)

The reversible component can be directly obtained from the
normal B-H curve without considering a hysteresis loop. It
follows that Hrev is related to the reactive power in the
material and Hirr is associated with the hysteresis loss.
Consequently, the instantaneous hysteresis loss is

dt

dB
Htp irrh =)( . (4)

Equation (4) indicates that the key to computing ph(t) is the
procedure used to obtain Hirr. If an equivalent elliptical loop
can be provided which gives the same hysteresis loss as the
original hysteresis loop, Hirr can be approximately evaluated.

Experiment observations indicate that under sinusoidal
excitation the Hirr-B loop is an ellipse when the magnetic field
is not saturated. When the field is saturated, we need to use an
equivalent ellipse with the same area as that of the original
hysteresis loop, as is shown in Figure 1.

Figure 1 Reconstruction of the hysteresis loop
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The ellipse in Figure 1 is described as





=
=

)cos(

)sin(

θ
θ

mirr

m

HH

BB . (5)

In the above equation, Bm is obtained from a historical record
of the flux density and Hm is determined using the principle
that the core loss calculated from the time domain has to be
the same as that from the frequency domain under the same
sinusoidal excitation. Let the time-average loss derived from
(3) and (5) be the same as that obtained from

β
mhh BfkP = . (6)

Then one obtains
πβ /1−= mhm BkH . (7)

Once Hm becomes available, Hirr can be determined by
tracing the ellipse defined by (5). Finally, the total
instantaneous core loss can be calculated as

5.12

)(
dt

dB
k

dt

dB
k

dt

dB
Htp etctirrv +





+= . (8)

In (8), kct = kc / 19.73921, and ket = ke / 8.763363, where the
constants are obtained by numerical integration.

Two rules are impressed in this model to obtain Bm from
the history record. One is the wiping-out rule: all ellipses
inside the current ellipse are wiped out. The other rule is that
the current ellipse is stored in the history list if a smaller
ellipse (minor loop) is created.

Similarly, the core loss formulation in the time domain for
the Steinmetz equation (2) is derived as

α

dt

dB
Ktpv ⋅=)( . (9)

In (9), K is determined in the same way as Hirr in (5). Thus

α
β IBCH mmm /1−= , (10)

and

∫ += 2

0

1cos
2

)2(
π

αα
α θθ

π
π dI . (11)

Note that K is the irreversible component of the magnetic
field H if α in (9) is 1.

APPLICATIONS

The proposed model has been used to compute the core
loss in 2D and 3D transient finite element analysis (FEA) for
both soft ferromagnetic and power ferrite materials. For 3D
core loss computation, (8) is extended to

2222

)(

β

βββ













++=
dt

dB
H

dt

dB
H

dt

dB
Htp z

z
y

y
x

xh

, (12)


















+


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dt

dB
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dB

dt

dB
ktp zyx

ctc
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ktp zyx

ete
. (14)

Based on each component pvx, pvy and pvz, (9) becomes

{ } 2//2/2/2 )()()()(
ββββ

vzvyvxv ppptp ++= . (15)

 Equations (12) to (15) can also be used for 2D core loss
computation if Bz is set to zero.

Two application examples are provided in this paper. One
application is calculating the core loss in a 250kVA three-
phase amorphous metal power transformer with five legs
based on 3D transient finite element analysis. The computed
instantaneous core loss is shown in Figure 2. The computed
time-average core loss is compared with the measured result
in Table I.

Figure 2 Computed instantaneous core loss

TABLE I. COMPUTED AND MEASURED CORE LOSS

Computed Measured
Core Loss 119 watts 126 watts

The other application is to evaluate the core loss in a 6/4
pole switched reluctance motor using 2D transient finite
element analysis. Details will be provided in the full paper.

CONCLUSIONS

A dynamic core loss model is proposed to predict
instantaneous core losses in unison with both 2D and 3D
transient FE analysis. This model is practical for industrial
applications because it provides reasonable accuracy and all
necessary parameters are either provided directly by
manufacturers, or can be extracted from manufacturer-
provided loss curves.
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Abstract—Within the finite element framework, non-linear
magnetic problems are often solved by an iterative line search
strategy. The efforts to achieve convergence concentrate on the
selection of an adequate relaxation factor. The line search is
performed along a direction obtained by solving a linear system
of equations. However, it is not required to compute this interme-
diate solution with a high accuracy, to ensure convergence. This
paper shows how the accuracy of the solver can be modified
at each non-linear iteration, in order to minimize the overall
computation time.

I. INTRODUCTION

NON-LINEAR problems are common in computational
magnetics. When formulated in the finite element frame-

work, they give rise to non-linear systems of equations, of
which the solution is often obtained by an iterative line search
procedure. Each individual cycle essentially consists of two
phases: the solution of a linear system of equations in order
to determine the Newton direction and the line search along
that direction for a better approximation of the solution of
the non-linear problem. For reducing computation time, one
usually considers the second phase [1], [2], [3]. However, it
is not necessary to compute the exact solution of the linear
system to obtain convergence. It is rather recommended to
modify the accuracy of the iterative linear solver at each non-
linear step. This paper discusses how this can be done at best.

II. TEST PROBLEM

The approach to minimize the computational efforts by an
adaptive system tolerance is applied to the simulation of the
short-circuit operation of a 400 kW four-pole induction motor.
The geometry and the computed flux lines are shown in Fig. 1.
The triangular finite element mesh contains 1419 nodes and
2772 elements. The magnetic vector potential is discretized
by first order nodal elements. The non-linear time-harmonic
problem is solved by the Picard-method (successive substitu-
tion). The ILU-preconditioned COCG-algorithm is applied to
solve the associated complex symmetric system of equations
[4]. At each non-linear iteration, the relaxation parameter
is determined by the cubic line search method [3]. For the
analysis, the mathematical software library PETSc (Portable
Extensible Toolkit for Scientific Computing) has been used
[5].

Air

Air

Fe
Cu

Fe

Fig. 1. The magnetic flux lines in a 400 kW induction motor under short-
circuit operation.

III. FIXED LINEAR SYSTEM TOLERANCE

The solution �� of the linear system at the ��� non-linear
iteration is a direction for the line search algorithm. For
achieving convergence, it is only required that this direction
is descent. This means that a relaxation parameter �� � ��� ��
can be determined such that ����� � ������ � �������,
with �� the ��� non-linear approximation and � theresidual.
The exact solution ��

�
of the linear system is a quasi-Newton-

direction here, as the Picard approach is used. Reducing the
accuracy of the linear system solver causes a deviation of the
computed direction �� towards the steepest descent direction
[3]. As long as this deviation remains small, the non-linear
convergence rate is hardly affected.
Fig. 2 shows the overall computation time as a function of

the linear system solver relative tolerance �, at two different
saturation levels. The lower curve corresponds to the case with
the smallest current and requires no relaxation, whereas the
upper curve requires a significant relaxation. Irrespective of the
observed oscillations, it is obvious that an optimal tolerance
exists. Moreover, it has a rather high value (� ���).

IV. ADAPTIVE LINEAR SYSTEM TOLERANCE

The norm of the residual, for two different values of �

is plotted in Fig. 3, as a function of the iteration number.
Between � and Æ the system matrix is updated. Hence, the
circles indicate the non-linear residuals �� of the iteration

Saratoga Springs, New York USA
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Relative tolerance of the linear system solver
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Fig. 2. The computation time as a function of the relative tolerance of the
linear system solver, at two different saturation levels.

process, whereas the crosses indicate the last residual � ������

obtained when solving the system. The upper part of the figure,
which counts for a tolerance � � ����, illustrates that the
effort for solving the linear system is high, when compared
to the decrease it yields for the non-linear residual. As a
consequence, the ratio

�� �
���������� �����������

���������� ������������ ��
(1)

is low. The lower part of the figure, obtained with � � ���,
yields a much higher value of this ratio. As the latter converges
faster, it is suggested to increase � if �� is low. However,
if �� is too high, the linear system solver is terminated at a
moment that the non-linear residual could be further decreased.
Therefore, high values of �� suggest a reduction of �.
Next to these observations, the lower part of Fig. 3 reveals

that initially many short non-linear steps are performed. This
increases the ratio of the time for building the linear system
of equations to the time for solving it. Besides the fact that
increasing � gradually transforms the quasi-Newton method in
a steepest descent method having slower convergence rates, it
explains why the computation time increases at even higher
values of � in Fig. 2. As a consequence, it is recommended to
decrease � in an appropriate way if this situation occurs.

V. RESULTS

The computations have been repeated taking the previous
considerations into account. If �� � ��	, � is divided by a
factor between 1.0 and 2.0 . If �� � ��	, � is multiplied by a
factor such that � cannot exceed 0.9 . The multiplication factors
depend on the value of �����	, which will be more thoroughly
discussed in the full paper. Short non-linear steps are penalized
by dividing � by a factor between 1.0 and 2.0 . When initiating
the computations with the same relative tolerances as in Fig. 2,
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Fig. 3. The norm of the linear residual while iterating with a fixed linear
system solver relative tolerance of 0.01 (top) and 0.5 (down) .

the averages of the computation time become 17.0 s and 32.4 s,
with a standard deviation of 0.8 s and 3.0 s respectively.
Compared to these, the minimal computation times in Fig. 2
are 14.1 s and 25.2 s, but their average value is much higher.
This obviously shows the improvement that can be obtained
by modifying the relative tolerance of the linear system solver
at each non-linear iteration.

VI. CONCLUSIONS

The computation time of a non-linear line search strategy
is decreased by modifying the linear system solver relative
tolerance at each new non-linear step. It is discussed which
considerations should be taken into account. By the simulation
of the short-ciruit test of an induction motor, it is illustrated
that this technique yields computation times, which only
slightly depend on the initial linear system solver tolerance.
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Abstract This work presents an improved method for non-linear
inductance calculation using the differential hysteretic reluctivity of a
magnetic material. The analysis of a circuit with resistance, capacitance
and inductance including non linearitiy´s and hysteresis is complex.
Calculation of the non-linear inductance is important for the analysis of
the low-frequency phenomena caused by switching off non-linear
circuits under special circumstances. The simulation results with
anhysteretic and differential hysteretic inductance calculation provides
strong numerical evidence numerical for the suitability of methodology.
Numerical convergence is faster than classical procedures.

INTRODUCTION

The study of practical magnetic systems with hysteresis
phenomenon is of great importance in Electric Engineering.
They are employed in magnetic circuits as inductors and
transformers. These magnetic circuits are strongly non-linear
and can lead to serious damaged in a operation of electric
systems. Ferroresonance is an oscillation which occurs in
electric circuits containing a ferromagnetic-core inductor and
a linear capacitor excited by a sinusoidal voltage source.
Howewer, to predict ferroresonance behavior in a circuit, it is
important for the magnetization characteristic of the inductor
be accurately modeled since this is the only nonlinearity in
the system [1].

The aim of this work is to describe a methodology for non-
linear indutance calculation using the differential hysteretic
reluctivity of a magnetic circuit and provide useful qualitative
insights into the effect of magnetic hysteresis on the electric
circuit´s behavior [2],[3].

HYSTERESIS MODEL

There are many hysteresis models and most of them are
successful on situations from which they are derived using
the field H as input variable, as for instance the well known
Jiles-Atherton model [4].

We propose in this work, a method presenting as
independent variable, the magnetic induction B. We define
the static hysteresis in terms of a first-order differential
equation which can readly be incorporated into the overall
differential equation that describes the circuit. The
differential equation of static hysteresis is given by [5]:

dB
dB

dH
IdB)(LHdBH

B

H
HD

B
HHS

B
H ∫∫∫

∆∆∆

γ−λ= (1)

where L(λH) is the Langevin function of λH and,

H

HSDH
H a

HIH +
=λ (2)

where “ID” is a directional variable and ∆B is the flux
density variation. In (1) and (2), “aH”, “HHS” and “γH” are
model parameters. An iterative procedure can be used to
obtain HH from (1). Newton's method is employed in this
work.

One can express the relationship between the magnetic
field H and magnetic induction B by means of a differential
reluctivity tensor dν . Using Euler’s scheme to represent the

derivatives, we can express [5]:

B

H

∆
∆

=ν d (3)

where )tt()t( ∆−−=∆ HHH , )tt()t( ∆−−=∆ BBB , and
t∆  is the time step.

Equation (3) can now be written in terms of two successive
time steps as:

)tt()t( d ∆−+∆ν= HBH (4)

The inductance depends on the differential reluctivity,
which is the slope of the hysteresis curve. Normaly as the
current drives the flux into saturation the inductance drops to
its lowest value. The variation in inductance can be
minimized by limiting the current swings since the smaller
BH loops are more linear. It is known that the relationship
between inductance, flux and number of turns is expressed by
means of the following expression:

Fe

2SN

i
L

υ
=ψ= (5)

where ν is the reluctivity. It has been considered here two
cases: classical anhysteretic reluctivity and differential
hysteretic reluctivity.
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CIRCUIT APPLICATION

Fig. 1 shows the circuit diagram. The capacitor C and
resistor R are linear. For the simulation Vs= 62.5 V,
C=148.6µF and R= 1.5 ohms. For the magnetic circuit we
have SFE=0.000105 m2, N=700 and 

FE
= 0,94 m.

L

R

CvS

s

+

-

i (t)

Fig. 1 - Circuit RLC – Nonlinear inductance

It is now possible to write the governing equations in the
time domain for the circuit. Kirchoff´s voltage law gives

)t(i
dt

)t(dV
C

)t(Vdt)t(i
C
1

dt
)t(di

L)t(Ri

s

s

=

=++ ∫
(6)

where Vs(t) denotes the sinusoidal supplied voltage.

Equation (6) is calculated by differentiating the first term,
as below,

dt

)t(dV
)t(i

C
1

dt

)t(di
R

dt

)t(id
L s

2

2

=++ (7)

The system in Fig. 1 is governed by a second order
differential equation. There are two variable states: the flux-
linkage Ψ in the inductor and the voltage V of the capacitor.

We can introducing the differential inductance L∆ that
allows us to write the current as,

( )1kk1kk L
1

ii −
∆

− ψ−ψ+= (8)

This calculation represents the fundamental step of
numerical integration in (9) by Euler procedure considering
the hysteresis.

( )

( )









ψ−ψ−−−=Ψ

ψ−ψ+=

−
∆

−

−
∆

−

1kk1kC

1kk1k
C

L
R

RiV
dt

d

CL
1

i
C
1

dt

dV

(9)

If X is the state vector, X(1) =ψ, X(2)=VC, the equation is
written dX/dt=F(X,t). This is a nonlinear differential equation
where time appears explicitly, but through a periodic
function.

OBTAINED RESULTS

With the objective of evaluating the studied model under
the practical view, a simulation test has been realized. The
utilized circuit has the following parameters of the hysteresis

model [5]: Ms=1.12 x106 A/m, a=110.16 A/m e
α=0.0001433, HHS=270 A/m, γH=0.15252.

For the resolution of the differential circuit equation the
Euler procedure has been used. The results obtained to
nonlinear inductance calculation are presented as follows,
considering the anhysteretic and hysteretic modeling.
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Fig. 2 -  Current versus time

The magnetizing current is cleared and the frequency of
oscillation is determined by the primary inductance at each
moment and the capacitance. The remaining energy in the
coil oscillates between the inductance and capacitance and is
dissipated in a short time. One hypothesis is that reduced core
loss levels are contributing to the apparent increase in
ferroresonance susceptibility of recent transformers.

CONCLUSIONS

The numerical calculation of a non-linear hysteretic
inductance shows good convergence and we consider that the
adopted methodology is efficient. More details will be
provided in the full paper.
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TEQSAS - Transient Electro-Quasi-Statics
Adaptive Simulation - Schemes
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Abstract— A transient electro-quasi-static solver based on the Finite
Integration Technique (FIT) is presented which is capable of simulating
high-voltage devices where both dielectric and nonlinear conductive ef-
fects are considered in the insulation materials. Metallic conductors are
modeled by floating potential constraints which require specialized solu-
tion techniques. The applied error-controlled adaptive linear–implicit time-
integration scheme avoids an inner nonlinear iteration loop. The efficiency
of the algorithms is illustrated by numerical tests.

I. INTRODUCTION

Recently, a transient electro-quasi-static formulation and re-
lated numerical schemes for the time domain analysis of high
voltage devices such as thermistors, capacitors or condenser
bushings were published in [1], [2]. In the electro-quasi-static
regime, the diffusion time is much smaller than the character-
istic time of the considered problem. While effects related to
the variation of the magnetic flux densities can be neglected
( ∂

∂t
�B ≡ 0), the irrotational parts of the displacement currents

have to be taken into account. Introducing such electro-quasi-
static assumptions into Maxwell’s equations allows the repre-
sentation of the electric field strength by a scalar potential φ
such that �E = − gradφ and

div
(

d

dt
(ε gradφ(t))

)
+ div (κ gradφ(t)) = 0. (1)

The presence of materials as pressboard or insulator oils with
low electrical conductivity values σ(�r) = σ(�r, �E) depending
on the electric field intensity and externally applied transient
voltages render the formulation (1) a nonlinear initial boundary
value problem.

II. TRANSIENT ELECTRO-QUASI-STATIC FIELDS WITH FIT

The spatial discretization of (1) with the Finite Integration
Technique (FIT) [3] leads to the governing system of stiff ordi-
nary differential equations (ODEs)

S̃MεS̃T d

dt
Φ(t) + S̃Mκ(Φ)S̃TΦ(t) = 0. (2)

where S̃ and S̃T are the discrete divergence and gradient ma-
trices and where Mε and Mκ = Mκ(Φ) are material matrices
combining the permittivities and field dependent electrical con-
ductivities with the the metric information of the grid [2]. The
stiffness of this ODE system necessitates the use of implicit time
integration schemes to follow the nonlinear transient evolution
of the discretized high voltage problems.

M. Wilke is supported by the Deutsche Forschungsgemeinschaft (DFG) under
grants WE1239/13-1 and WE1239/17.

III. NUMERICAL APPROACH

A. Adaptive Time Stepping

In [1] and [2] only standard implicit θ−time integration meth-
ods with a Richardson-extrapolation time step selection scheme
and standard nonlinear iterations were used for the transient sim-
ulation of electro-quasi-static fields. Here, motivated by pre-
vious experience for magneto-quasi-static simulations [4], we
propose the use of linear-implicit Rosenbrock-Wanner time in-
tegration schemes [5] for the electro-quasi-static system (2).

These one-step methods of implicit Runge-Kutta-type are s-
stage schemes, which allow to combine an error-controlled time
integration of (2) and nonlinear updates in a single iteration
loop:[

1
γ∆t

S̃MεS̃T + S̃M �J

�E

(Φn) S̃T

]
Φ̂ni =

−S̃Mκ(Φ̂i)S̃T Φ̂i − S̃MεS̃T ·
i−1∑
j=1

cij

∆t
Φ̂nj , (3)

for i = 1 . . . s with ti = tn + αi∆t, Φ̂i = Φn +
∑i−1

j=1 aijΦ̂nj

and the new time solution Φn+1 =Φn +
∑s

i=1 miΦ̂ni. The co-
efficients aij , cij , αi ,γi, γ and mi determine the specific Rosen-
brock method. A second coefficient set m̂i yields an embedded
lower order solution, which compared to the higher order solu-
tion, yields an error criterion. Only the accuracy threshold , i.e.,
the relative error tolerance rtol , specified to control the com-
bined time-integration and the nonlinear iteration process has to
be specified and only linear algebraic systems of equations have
to be solved in (3).

B. Floating Potentials

If metallic bodies have to be considered in the computational
domain, they can be interpreted as macro elements with one
unknown potential value, i.e., a floating potential, [6]. In or-
der to keep the band structure of the system matrix in (2) un-
perturbed, the floating potentials are inserted as additional con-
straints Φi − Φj = 0 for all nodes i and j in a floating poten-
tial body in a saddle-point formulation [7] The constraints are
collected in a matrix B with BΦ = 0 and added to the time dis-
cretized system (2) introducing a set of Lagrange multipliers λ
[2] to yield [

K BT

B 0

] [
Φ
λ

]
=

[
f
0

]
. (4)

1
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The symmetric, indefinite, linear system (4) can be solved by the
Minimal Residual method using a Jacobi-block-preconditioner
based on diag(K̃, Ã), where K̃ denotes a preconditioner for
K, preferably multigrid, and Ã an approximation to the Schur
complement A = BK−1BT [8]. A fair choice for Ã is
Ã = BD−1BT , where D is the main diagonal of K. A better Ã
can be constructed based on the underlying differential problem.
The Lagrange multiplier vector λ represents the charges at the
equi-potential surfaces. The system

Aλ = BK−1f (5)

expresses the relation between these charges and and the applied
volume charges and boundary potentials, as represented by f .
As a consequence, (5) can be interpreted as a system Cq = V
with C a capacitance matrix, q a vector of unknown charges
at the equipotential surfaces and V a vector of applied volt-
ages. An alternative formulation for (4) is obtained by using
the orthogonal projection operator P = I − BT

(
BBT

)−1
B

and solving the symmetric, positive-definite system PTKPu =
PT f by the Conjugate Gradient (CG) method. The precondi-
tioned system is PK̃−1PT KPu = PK̃−1PT f and requires
two applications of the projector in each CG step.

IV. NUMERICAL RESULTS

For a verification of the proposed schemes a simple test con-
figuration is studied: A plate capacitor with a layered dielec-
tricum of 10 cm depth (Fig. 1). The layers parallel to the plates
consists of two lossy dielectric materials with different permit-
tivities and conductivities dependent on the surrounding poten-

tial distribution according to κi

(
| �E|

)
= κ0i

(
|�E|
E0

)2

+ κ̄i.

C D
1

01,=8
=3 10 S/m

C E
0

-8

C D
2

02,=12
=6 10 S/m

C E
0

-14

Fig. 1. Plate capacitor with layered dielectricum with nonlinear conductivity

Since the model represents an infinitely extended configura-
tion parallel to the plates by adopting appropriate boundary con-
ditions, an analytical calculation yields the occuring potentials
as well as the nonlinear conductivity distribution. Fig. 2 com-
pares the corresponding values near the top plate. The diagrams
also show the sampling of the applied excitation consisting of
a DC voltage of 200kV superposed by a sinusoidal oscillation
with a frequency of 50Hz and an amplitude of 50kV. The rel-
ative tolerance for the nonlinear time-stepping process was set
to 10−3 and resulted in a sequence of 12 accepted and 12 re-
jected steps in the transient simulation, following a calculation
of a nonlinear stationary current flow problem for the start time.
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Fig. 2. Comparison of analytical and numerical calculations with the adaptive
linear-implicit scheme RODAS3 [5] for a potential and a conductivity values

V. CONCLUSION

Transient electro-quasi-static adaptive simulation (TEQSAS)
schemes were introduced, using error-controlled time step se-
lective linear-implicit time integration methods for a nonlinear
electro-quasi-static field formulation based on the FIT. Float-
ing potentials that can be included by a Lagrange multiplier for-
mulation result in indefinite algebraic systems of equations, for
which a positive definite alternative and several preconditioning
strategies are presented. First numerical results with the adap-
tive scheme (3) are achieved for a simple problem. More realis-
tic problems will be presented in the upcoming full paper.
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Abstract - Semi-conducting material with non linear behavior are 
used in HV insulating system to make uniform the electric field in 
order to lower the dielectric constraints. The optimization of this kind 
of structure needs an accurate evaluation of the electric field. BEM is 
known to be very well adapted to electric field computation especially 
in open boundary configuration that is mainly encountered in outdoor 
insulation. On the other hand this method is restricted to linear 
problems and the presence of a material with a non-linear behavior 
implies the implementation of another type of discretisation like the 
FEM. This paper presents a coupling between BEM and FEM that will 
permit to simulate, thanks to a time step method, the evolution of the 
electric field in an insulation structure built with classical dielectric 
materials and other material with a non-linear conductivity. 

INTRODUCTION

The interest of non-linear material is well known in HV 
insulation technology [1]. Indeed this kind of material 
permits to make uniform the electric field in bushing type 
structure that are encountered each time there is a transition 
from an internal to outdoor insulation. 

The efficiency of non-linear materials is mainly linked 
to the degree of non-linearity that can concern the 
permittivity and the electrical conductivity. The non-linear 
conductivity should be implemented only with time varying 
voltage. Presently it is for the electrical conductivity that the 
technology permits to elaborate materials with the largest 
scale of variation. HV apparatus are concerned by a 
frequency domain ranging from 50 Hz to a few hundreds of 
kHz. Hence, the conductivity has to be in the domain from 
10-6 to 10-14 Sm-1 for electric field value about a few 
kV/mm; that let them considered as non-linear semi 
conducting material (NLSC). 

This kind of material can be implemented in thin layer 
(less than 1 mm) as a coating. They are available as paint or 
ribbon. An example of utilization is the anti corona layer 
which is deposed on the stator bars at the coil head in 
rotating machine. These configurations can be computed by 
modeling the layer as a surface with adapted property 
(surface conductivity). This description fits quite well with 
BEM [2]. 

In other situation like in solid cable extremity, the 
semiconducting (SC) zone is a volume with non-negligible 
dimension in each direction. The required conductivity is 
obtained by introducing the appropriate quantity of ZnO 
grains (Zinc oxyde) added directely in the polymere. For 
these configurations the NLSC region must be discretized 
using FEM to take into account the permittivity and the 
non-linear conductivity. The other regions are treated by 
BEM.

At each time step (Region NL, Fig. 1), the convergence 
of the non-linearity is obtained by a direct iteration scheme 
that found the values of the conductivity at each node of the 
FE mesh. 
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Assembling NonLinear Part + Resolutiont + t Update Conductivity at  nodes

< tol

Yes

No

Assembling Linear Part

Assembling NonLinear Part + Resolutiont + t Update Conductivity at  nodes

< tol< tol

Yes

No
Region NL

Assembling Linear Part

Assembling NonLinear Part + Resolutiont + t Update Conductivity at  nodes

< tol

Yes

No

Assembling Linear Part

Assembling NonLinear Part + Resolutiont + t Update Conductivity at  nodes

< tol< tol

Yes

No
Region NL

Fig. 1. Global algorithm of the method 

BOUNDARY ELEMENT FORMULATION

For each time step, in the dielectric region it is necessary 
to solve an electrostatic problem governed by Laplace’s 
equation. The boundary element method applied to an 
electrostatic problem came from the second Green identity 
in the space: 

22 dVGGVdVGGV . (1) 

Where G is the Green function to 3D electrostatic case : 

|'|4
1',G

rr
rr . (2) 

From Eq. (1), we can express the potential in every node 
of the boundary by superposition of the potential and its 
normal derivative of each node of the boundary.  

Considering Fig. 2, the Laplace’s equation gets the 
following integral form where c is equivalent to the solid 
angle at the observation point: 

2d
2d d

n
'V',G'V

n
',GcV rrrrrrr , (3) 

where r, r` and n are, respectively, the vector position of 
the observation point, of  the integration point and the unit 
normal vector of the boundary ( ) enclosing the region ( ).

The system of equations enables us to find the potential 
V and its normal derivative nV unknowns on the 
borders of the dielectric region. 

FINITE ELEMENT METHOD

The conducting region is characterized by a conductivity 
and a relative permittivity . If we write the total electric 
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current density J as the sum of the conduction and  
displacement current densities, we obtain the following 
relation:

V
t

V 0J (4)

Taking the divergence of both sides of Eq. (4) and 
considering the continuity equation ( 0J ), the 
following conduction equation can be derived: 

0V
t

VV. 2
0

2 (5)

Because of the non-linearity, we cannot study the 
phenomenon in harmonic regime. So, we approximate the 
time derivative by an Euler difference scheme [3]: 

t
VV

t
V 1ii

i
(6)

Finally, the equation governing the conductivity is: 

0. 120202 iiii VVVtVt (7)

Weighting Eq. (7) by functions W, integrating over the 
conducting area, and integrating by parts, we obtain: 

d
n

VWtdV.Wt
i

0
i

0

d
n

VWdV.W
1i

0
1i

0 (8)

This equation after discretization gives a system of 
equations that must be coupled with the equation system 
originated by the boundary element method. 

COUPLING

To permit the coupling of both equation systems 
originated by FEM and BEM [4], we must impose at the 
dielectric–conductor interface the boundary condition: 

0

2
2

1
1 n

V
n
V  (9) 

The Eq. (9) introduces a new unknown in each node of 
the interface dielectric-conductor, the electric charge 
density ( ). To complete the system of equations, the 
continuity equation (Eq. (10)) for the linear current density 
can be used to have the same number of equations and 
unknowns.

0
tn

V (10)

VALIDATION

We validate the code, with a cylinder capacitor, infinite 
along z, with a non-linear conducting (Fig. 3, gray region). 

C1

C3

C4

C21=4
2=1 3=1

z

21

Boundary Conditions:

C1: V = Vsource

C2: V = 0

C3 & C4: V/ n = 0

C1

C3

C4

C21=4
2=1 3=1

z

21

Boundary Conditions:

C1: V = Vsource

C2: V = 0

C3 & C4: V/ n = 0

Fig. 3. Cylindrical Capacitor.

The non-linear conductivity is governed by Eq. (11), 
where o is the conductivity amplitude for E = 0: 

EexpE 0 . (11) 

Two kinds of voltage sources, a sinusoidal source (s1)
tsinV 1000  and a lighting impulse source (s2)

ttV 64
0 10.1exp10.2exp , were used. The parameter 

values to (11) used are 0 = 1.10-9 and  = 1.10-4.
To validate the code, the problem was analyzed as a 

one-dimensional and as a two-dimensional model. The 
results are presented in Table I, obtained by using the 
proposed hybrid technique and a one dimensional FEM, for 
two points 1 and 2 as showed in Fig. 3.

TABLE I
COMPARISON BETWEEN THE TWO METHODS

S1 S2 V0 FEM1D BEMFEM Error FEM1D BEMFEM Error 
V( 1) 506 517 2 % 676 708 4 % 1000

V V( 2) 248 244 1.6% 107 111 3.7% 
V( 1) 1170 1178 0.6% 1670 1777 6 % 3000

V V( 2) 877 865 1.3% 504 558 10 % 

The accuracy of the results is acceptable for the power 
frequency but became worse for the lightning impulse 
constraint, which has much higher frequency components. 
This problem may be due to a too simple time scheme used 
that can be improved by introducing a relaxation coefficient 
(implicit method). 

In the full paper, a complete analysis of these results 
will be given and the problem of an HV cable extremity of 
NLSC material will be presented. 
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Abstract This paper presents magnetic flux distribution and iron 
loss distribution in a ferrite core under pulse excitation by using the
finite element method. It is difficult to consider the magnetic
characteristics in numerical analysis under the pulse excitation.  The
magnetic characteristics under the pulse excitation is examined by using
the magnetic characteristics of each frequency component after Fourier
expansion.

INTRODUCTION

RECENTRY, the switching power supplies are widely
being used as the stabilized DC power supplies for

applied electronic devices. Mn-Zn ferrite cores have been
widely used  to the transformers of the switching power
supplies. The high efficiency of the switching power supplies
has been performed by the higher frequency of the switching.

Mn-Zn ferrite can keep the high permeability up to the 
limited frequency range, though, the permeability decreases
immediately after this range because of the resonance and 
magnetic domain resonance which are known as Snoek’s
limit [1]. Therefore, the permeability of the ferrite materials
has non-linearity depending on the frequency.

Conventionally, the numerical analysis for the magnetic
materials whose permeability has frequency dependence
hasn’t been examined yet. Moreover, the eddy currents are
usually neglected because of the high-resistivity of ferrite
cores. However, the resistivity of Mn-Zn ferrite cores is
rather small in higher frequency range, so, the eddy currents
should not be neglected. The ferrite materials of the
transformers of the switching supplies are excited under the
pulse waveform, then the numerical analysis of them is 
difficult. In this paper, Fourier expansion was applied to the
pulse wave of the excitation to carry out the numerical
analysis at each frequency component. The permeability
depending on the frequency derived from the measured data
was used for the numerical analysis to each frequency
component to take account into the frequency dependence of
the complex permeability.  After the numerical analysis of
each frequency, the results are supervised to examine the 
magnetic characteristics under the pulse excitation.  The
Chua-Type-Model was applied for the numerical procedure to
consider the complex permeability [2].

FORMULATION

Governing Equation

We used the complex approximation to introduce the
complex permeability into the finite element method. The
governing equation in the linear two-dimension can be
written as (1) from Maxwell’s equations with the assumption
that all physical quantities vary sinusoidally,

2 2

02 2

dAA A J
dtx y

,      (1)

where A is the magnetic vector potential in z direction, 0J the
exciting current density,  the complex permeability, the
supply angular frequency, and the conductivity. All
physical quantities are assumed as the complex number in this
paper. The magnetic vector potential and exciting current can
be presented as (2) after Fourier expansion.

0 01

1

cos 2 1

cos 2 1

nn

n An

J J n t

A A n t

Jn

n

,      (2)

where ,Jn An are the phase difference of the exciting current
and magnetic vector potential between real part and
imaginary part, respectively. Also, Electric devices are
usually supplied by constant terminal voltage, so we adopted
the terminal voltage method for the numerical analysis.

Complex permeability 

The phase difference occurs when the magnetic materials are
excited by the high alternating field. Then, we used the Chua-
Type-Model as the magnetization characteristic model of the
magnetic material to consider the phase difference. The
relation between the magnetic flux density B and magnetic
field strength H is expressed by the following equation by the
Chua-Type Model,

1 1
r

dB dHH B
s dt dt

,        (3) 

where s is the hysterics coefficient,  the permeability, and
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r the reversible permeability. By substituting j  for / t ,
Eq (3) is written as , 

)j

I

B
H

2 2

2 22 2

rr ss j
s s

( ) (R I

(4)

where R is the real part of complex permeability and  the 
imaginary part. Complex permeability calculated from Eq(4)
is used for our numerical analysis. 

RESULTS AND DISCUSSIONS

Fig. 1 shows the complex permeability curve of the ferrite 
core by calculating the Chua-Type Model.  The calculated
and the measurement curves are obtained by Eq. (4) by using
the values, is 8.564e-4, d 1.0091e-5 and s 5.3809e4. These
parameter values were derived from the measurement.  Figs.2
(a) and (b) show the hysterics loops between the magnetic
flux density B and the magnetic field strength H under the
sinusoidal alternating excitation at 1MHz.  Figs. 2 (c) and (d)
show the waveforms of them under the same excitation. 
Fig .2 (a) and (c) show the measured results and (b) and (d)
show the calculated ones. By comparing the measured with
the calculated, it can be said that the numerical results agree
with the measured ones very well.  Fig.3 show the iron loss
distribution under the pulse excitation considering up to 15th
harmonic components.  To consider frequency dependence of
the complex permeability, we used the each complex
permeability value at each frequency component.

Fig. 1.  Complex permeability by using Chua-Type-Model 

[T] [T]

[A/m]

(a) Measured hysterics loop                         (b) Calculated hysterics loop 
[A/m]

[T] [A/m][T][A/m]

(c) Measured B and H waveform       (d) calculated B and H waveform
Fig. 2. Hysterics loop in the ferrite core and waveforms of magnetic flux 
density B and magnetic field strength H under sinusoidal alternating
excitation at 1MHz 

Fig. 3. Iron loss distribution under the pulse excitation considering 15th

harmonic components (Switching frequency 1MHz)

CONCLUSION

We can conclude our paper as follow,
(1) The iron loss distribution was shown under the pulse

excitation by considering the frequency dependence of the
complex permeability.

However, the comparison between the measured data and
the calculated data is required under the pulse excitation to 
verify our proposal method.
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Abstract  A time domain method is presented to treat transient
quasi-static electric problems if the permittivity depends on frequency.
The inverse Fourier transform of the complex permittivity spectrum is
used in a time stepping procedure. The method is numerically realized
using finite element techniques. An example illustrates the effect of the
frequency dependence of permittivity on the time domain solution.

INTRODUCTION

In many problems involving applications ranging from
microwave substrates to high voltage isolators, capacitive and
conductive effects have to be simultaneously taken into
account, whereas inductive phenomena can be neglected [1].
This means that the quasi-static electric field intensity is curl
free and can hence be described by an electric scalar
potential, but both the conduction and displacement current
density have to be considered. In case of steady state time
harmonic problems, the use of the complex notation allows
the constant permittivity and conductivity of linear materials
to be described by a complex permittivity or, equivalently, by
a complex conductivity. In problems with general time
variation or ones involving nonlinear material properties, a
transient treatment is necessary [2].

It is however known that the permittivity of certain
materials strongly depends on frequency [3]. This fact can be
easily taken into account in single frequency time harmonic
problems, but it is not straightforward to consider it in the
time domain. The aim of this paper is to present a method
applicable to transient problems which is, however, capable
of treating the frequency dependence of permittivity.

QUASI-STATIC ELECTRIC FIELD

If the influence of magnetic effects on the electric field can
be neglected, but both conduction and dielectric effects occur,
the relevant Maxwell's equations describing the resulting
quasi-static electric field are

0curlE , (1)

( ) 0div
t
DJ (2)

where E is the electric field intensity, J is the conduction
current density, D is the electric displacement and t denotes
time. Due to (1), the electric scalar potential can be
introduced as

gradVE (3)

and, using the constitutive relationships

J E , (4)
D E (5)

where is the conductivity and is the permittivity, the
differential equation

0div gradV div gradV
t

(6)

is obtained for the scalar potential.

FREQUENCY DEPENDENT PERMITTIVITY

In the frequency domain, (6) has the form

ˆˆ( ) ( ) 0div j j gradV j (7)

where is the angular frequency, ˆ ( )V j is the Fourier
transform of the scalar potential, ˆ( )j is the frequency
dependent permittivity describing the relationship between
the Fourier transforms of the displacement, ˆ ( )jD , and of

the electric field intensity, ˆ ( )jE , as
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ˆ ˆˆ( ) ( ) ( )j j jD E . (8)

The complex function ˆ( )j can be assumed to be known
from measurements. Now, using the convolution theorem [4],
(8) can be transformed into the time domain to yield

( ) ( ) ( )t t tD E
0

( ) ( )
t

t dE (9)

where ( )t is a fictitious time function obtained as the inverse
Fourier transform of ˆ( )j :

1 ˆ( ) ( )t jF
1 ˆ( )

2
j tj e dt . (10)

This can be easily computed using fast Fourier techniques. In
(9) it has been assumed that both ( )t  and ( )tE are casual
functions, i.e. they are zero for 0t .

TIME STEPPING PROCEDURE

Using (9), the differential equation (7) can be written in the
time domain as

0div gradV div gradV
t

. (11)

For the sake of simplicity, let us assume that a backward
Euler procedure with a constant time step t  is used to
account for the time variation. Approximating the time
derivative by a difference quotient and the convolution
integral using the rectangle rule, one obtains

( ) 1
( 1) ( ) ( )

0

n n
k k n k

k
gradV gradV

t
(12)

where the superscript (k) refers to values at kt k t .
Setting (12) in (11) and applying finite element Galerkin

techniques, the following recursive scheme is obtained for the
potential at the n-th time step:

1
(1) (0) ( ) ( 1) ( ) ( )

1

n
n k k n k

k
V VK K K K K (13)

where the vector V is formed by the nodal values of the scalar
potential, K , and K are the stiffness matrices corresponding
to the current field and the electric field, respectively.

NUMERICAL EXAMPLE

A cylindrical piece of BaTiO3 ceramic with both its radius
and height 10 mm is situated between circular electrodes
whose radius is 8 mm [2]. A voltage step of 2 V is switched
on the series connection of this element and of a resistor of
0.6 M . The conductivity of the ceramic is 2.9x10-7 S/m and
its frequency dependent permittivity is given as

0
0ˆ( )

1
j

j
(14)

where 9.9x103, 1.0x105, 3.83 s and  0.38.
The temperature is taken to be constant (200 oC) and the
dependence of the conductivity and permittivity on the
electric field intensity has not been taken into account.

The inverse Fourier transform of (14) turns out to be
casual. The method of the paper has been incorporated into a
2D finite element code. The resulting time function of the
voltage between the electrodes is shown in Fig. 1 with and
without frequency dependence of the permittivity.
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Fig. 1. Time function of the voltage between the electrodes. The permittivity
in the frequency independent case is .
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Abstract   The aim of this proposal is to give an overview of the
conception including modelling and technological realisation of micro-
inductors dedicated for different applications : Non destructive testing 
(NDT), Radio frequency (RF) , Nuclear magnetic resonance (NMR), ... In 
this paper a circle micro-inductor is considered  with 1 turn at 3 GHz
frequency. The modelling is realised by using a magneto-dynamic 3D 
finite element formulation. This paper reports the modelling and 
measurement  results. 

INTRODUCTION

This work presents the first step before developing
various micro-inductors dedicated for different applications
(NDT, RF, NMR...). The finite element method (FEM) is one 
of the most used numerical method for solution of
electromagnetic problems. In this paper, the resistance and 
the inductance of a  circle micro-inductor with 1 turn are
evaluated. The proposed methodology can be generalised to
any inductor. The studied structure have a total wire length on
a scale much shorter than the wavelength of the signal so that
any propagation effect can be neglected [1]. The numerical
and measurement results are presented and compared.

TECHNOLOGICAL REALISATION

For fabrication of the samples we use UV copper
micromoulding (poor LIGA). This process is of great interest
as it allows a fast and low cost realization of metallic
microstructures that may present complex shapes with good
mechanical, electric or magnetic performances.
The two major steps are the creation of a photoresist mould
by U.V. photolithography and metal electrodeposition 
through this mould thanks to a metallic seed-layer previously
coated on the glass substrate ( 1500 Å evaporated Cu/Cr ).
The moulds are elaborated using the AZ 4562 thick positive 
photoresist because of its large scale of thicknesses (ranging 
from 6µm to 40 µm), its high transparency in the U.V. 
wavelength range used and its good behavior in
electrodeposition solutions. The resist is classically spin-
coated and then pre-baked on a ramped hotplate (from
ambient temperature to 90 °C with a 30 % ramp). After
exposure, the samples are revealed in an alkaline bath (AZ 
400 K, with 1:4 proportion to desionised water) and carefully
rinsed. The moulds are thus ready to be filled by copper 
electrodeposition. Copper is electroplated using a three-
electrodes system with a copper anode, the wafer as cathode

and a saturated calomel reference  electrode. All deposits are 
made at room temperature, with magnetic stirring and dc
current density of 50 mA/cm². The electrical resistivity is 
close to the bulk value. After the electrodeposition step, the 
seed-layer is etched of electrical isolation. 

Fig.4 Main steps for micro-moulding process

MODELLING

The vector potential method is applied considering
dynamic fields and neglecting displacement currents, the 
electromagnetic phenomena can be modelled in the harmonic
domain by Maxwell equations [2]:

JH                                         (1) 

0.B                                           (2) 

BE j                                   (3) 

The constitutive relations must be added to these relations:

and where and are respectively 
the magnetic flux density, the magnetic field, the electric
field, the current density, the electric conductivity and the
magnetic permeability. The solution can be obtained by
introducing the magnetic vector potential which allow the
flux density to be expressed by:

HB EJ

B

,J,E,HB,

A
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AB                                         (4) 
To calculate L and R, the RMS values of the magnetic

energy and power losses are considered. The inductance is
calculated by using the magnetic energy (W), this energy is
given by the following expression:

dv
2

V
1

2
1

V
dv2

1W BBH         (5) 

where V is the considered domain of integration.
The expression connecting the energy to the inductance is

given by this expression :

2
IL2

1W                                   (6) 

The resistance is calculated from the dissipated power in
metallic copper conductors by the Joule effect. The electrical
resistivity is denoted by . The equation for the power losses
(p) is : 

2
IRdvJ 2v

0
p                     (7) 

.

RESULTS

The geometry of the circle micro-inductor is shown in
Fig. 1, the inner and the outer radius are respectively
r1 = 220 m and r2 =  230 m. The thickness and the width
are 10 m. The resistivity of the metallic copper conductor is
1.7 .cm.

To calculate L, we consider the energy  localised in R1 and
R2.. For 3 GHz frequency, The inductance numerical value is
1.2 nH and the measurement value is 1.4nH. The resistance 
value (R) is dependent of the frequency, the obtained
numerical value is 1.12 .

Fig. 1.  Photography of the micro-inductor

To apply the FEM to the considered problem, the studied 
domain is decomposed into three regions (Fig.2).

The first region (R1) constitutes the micro-inductor, the 
second region ( R2)constitute the air. Finally, the third region
(R3) is constituted by infinite elements [3].

Fig. 2.  FEM for the solution domain

Fig. 3 shows the distribution of the flux density field:

Fig.3. Distribution of the flux density

CONCLUSIONS

In this work, the aptitude of the FEM to modelling micro-
inductors is demonstrated.. It constitutes the first step  for the 
conception aid of micro-inductors dedicated to specific
applications ( NDT, RF, NMR,…). In the final paper, the
electrical equivalent circuit will be presented and the
behaviour in function frequency will be analysed.
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Modeling of 3D Stranded Inductors with the Magnetic Vector Potential Formulation
and Spatially Dependent Turn Voltages of Reduced Support
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Abstract A method is developed to efficiently take 3D stranded in-
ductors into account with the magnetic vector potential magnetodynamic
formulation. The definition of the turn voltages as a continuous spatially
dependent quantity of reduced support enables to simplify the turn cir-
cuit relations, relating currents and turn voltages. The continuous exten-
sion of these relations for all the wire turns then reduces the bandwidth
in the system matrix in comparison with the usual method. The voltage
of each turn is moreover directly known and, hence, does not require a
tedious post-processing.

I. INTRODUCTION

Magnetic vector potential 3D finite element formulations
are well known, either with nodal [1] or edge finite elements
[2], [3]. Circuit relations for inductors, relating currents to
voltages, are often needed for electric circuit coupling to en-
able any kind of excitation.

The circuit relation of a stranded inductor relates its cur-
rent to its total voltage and contains information about the
magnetic flux linked to the turns. It generally leads to a wide
bandwidth in the algebraic system matrix since it involves the
distribution of the magnetic vector potential in the whole in-
ductor region, which can slow down the convergence of an
iterative solver, especially in a 3D model.

Moreover, the a posteriori calculation of the voltage asso-
ciated with each turn of a 3D coil necessitates the integration
of a local relation along the path following this turn; this in-
tegration is trivial in a 2D model. The knowledge of the turn
voltages can be of interest to check the voltage constraints in
high voltage apparatus; the voltage between two points would
be given by the sum of the voltages of all the intermediate
turns.

A method is developed here to reduce the support of inte-
gration involved in 3D stranded inductor circuit relations,
herewith reducing the bandwidth of the circuit relations and
facilitating the calculation of the turn voltages. This method
is based on the developments done in [3] and [4] for taking
massive and foil winding inductors respectively into account.
It uses a coupling between edge and nodal finite elements, for
the magnetic vector potential and the electric scalar potential
respectively. The voltages associated with massive and foil
winding inductors have been expressed through global sets of
nodal functions giving particular forms to the electric scalar
potential and reducing its support. Such a support reduction
will be applied for stranded inductors.

The accuracy and the efficiency of the method will be
pointed out through the study of a test problem.

The work has been carried out in the frame of the Interuniversity Attraction
Poles IAP P5/34, funded by the Belgian federal government. P. Dular is a
Research Associate with the Belgian National Fund for Scientific Research
(F.N.R.S.).

II. MAGNETODYNAMIC A-V-FORMULATION AND MASSIVE CONDUCTOR
CIRCUIT RELATIONS

A bounded domain of the two- or three-dimensional
Euclidean space is considered, in which the magnetodynamic
problem is defined. The eddy current conducting part of is
denoted c and the non-conducting one cC, with

= c cC. Massive inductors belong to c.
The general expression of the electric field e via a mag-

netic vector potential a involves the gradient of an electric
scalar potential v in c, i.e.

e=– t a – grad v  in c ,   with b =curla  in  , (1-2)

so that the Faraday equation is satisfied. With these two po-
tentials, the a-v magnetodynamic formulation is obtained
from the weak form of the Ampere equation, i.e. [2], [3]

( , ' ) ( , ' ) ( , ' )1 0curl curl grad vt c c
a a a a a ,

a' ( )Fa , (3)

where is the magnetic permeability, is the electric con-
ductivity, Fa( ) is the function space defined on  and con-
taining the basis functions for a as well as for the test func-
tion a'; ( · , · ) denotes a volume integral in of the product
of its vector field arguments.

The total current Ii flowing in a massive conductor i is
shown in [3] to be weakly expressed by the circuit relation

cc
)vgrad,vgrad(V)vgrad,(I i,si,sii,sti a , (4)

where vs,i is a global basis function for the voltage Vi. At the
discrete level, this function is reduced to the sum of the nodal
basis functions of all the nodes located in a cross-section with
a support limited to a transition layer (composed of the ele-
ments located on one side of the cross-section and having
nodes on this section). Circuit relation (4) appears to be the
natural extension in 3D of its usual form in 2D.

III. STRANDED CONDUCTOR CIRCUIT RELATIONS

As is commonly done, a turn voltage continuum will be
built with the aim to make superfluous the explicit definition
of all the wires. However, this continuum will explicitly ap-
pear in the final formulation and its support will be reduced,
which distinguishes the proposed method from the classical
one.

Three principal local perpendicular directions are defined
in the winding, i.e. e , e  and e , being respectively two arbi-
trary directions perpendicular to the wires and one direction
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parallel to them (Fig. 1). Coordinates ,  and are associ-
ated with these directions. The winding has Ns turns and its
total surface area is Ss.

Expression (4) applied to a given turn of the winding, lo-
cated at mean position ( , ) in a cross-section of the induc-
tor, gives the associated circuit relation, which is then divided
by the surface area Ss/Ns of this turn (a fill factor can be con-
sidered without difficulties), i.e.

)vgrad,vgrad(V)vgrad,(I
S
N

i,si,sii,sti
s

s a , (5)

where denotes the line described by for the fixed posi-
tion ( , ), i.e. the mean path of the turn. The assumption
made is that a does not vary in the wire cross-section. Volt-
age Vi depends on the considered turn, i.e. Vi = Vi( , ),
while function grad vs,i is independent of ( , ) (Fig. 1).

In order to weakly satisfy (5) for all the turns, Vi( , ) is
extended to a continuum for all the turns (  and are given a
continuous nature) and a projection equation is expressed, i.e.

d),('VI
S
N

i
s

s )vgrad),('V,( i,sta

       0)vgrad),('V,vgrad),(V( i,si,si ,

                                       IR),('V , (6)

where is the whole volume of the stranded inductor.
The test function for the turns circuit relation thus appears to
be V'( , ) grad vs,i, while it is grad vs,i for a single massive
conductor. The total voltage of the winding can be deter-
mined by integrating Vi( , ) in the cross-section. 

At the discrete level, an approximate form of Vi( , ),
being also used for V'( , ), has to be defined. Polynomial or
2D finite element variations are examples of possible ap-
proximations. These approximations can be independent of
the mesh used for the vector potential. They can also be based
on the trace of the 3D mesh in the cross-section. Various ap-
proximate form will be detailed and discussed in the extended
paper. Note that a constant approximation would amount to
considering a massive inductor.

As a result, thanks to the limited support of function vs,i
(Fig. 1), the number of unknowns involved in (6) can be sig-
nificantly reduced. In return, it is however necessary to define
an anisotropic tensor value for the conductivity , with a zero
value in directions e  and e . The actual distribution of the
current density is then considered through the tensorial con-
ductivity.

IV. APPLICATION

The developed tools have been applied to a 3D stranded
inductor. Turn voltages obtained with the proposed method,
with polynomial and 2D finite element variations, have been
compared to those obtained with the classical method using
an integration in the whole inductor region for defining the
circuit relation (e.g. Fig. 2). Other interesting validation re-
sults will concern the computation of the turn resistances, the
effect of the tensorial conductivity and the resulting correct
distribution of the current density. The efficiency of the
method will also be studied in the extended paper.

Fig. 1. Stranded conductor and its continuous representation (can be seen as a
section of a 3D structure showing a layer of turns).
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Fig. 2. Turn voltage continuum in a 3D stranded inductor compared to the
post-processed turn voltage with the classical method (imaginary part); the
results are shown along three particular lines in the cross-section of the in-
ductor.

V. CONCLUSIONS

An alternative method has been developed to efficiently
take stranded inductors into account in the frame of the mag-
netic vector potential 3D magnetodynamic formulation. In
order to avoid the explicit definition of multiple wire turns
and to reduce the bandwidth of their circuit relation, the turn
voltages are explicitly considered in the formulation as a
continuous spatially dependent quantity of which the support
is limited to a cross-section of the inductor and its neighbor-
hood. The turn voltages are then also directly a part of the
solution and, hence, does not require a tedious post-
processing.
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Abstract – In this paper the authors propose an original approach for
coupling the scalar and vector potential formulation in 2D and 3D mag-
netic field computations by means of the FE method. The hybrid formu-
lated is elaborated for the 2D case, showing that the simplicity of the vec-
tor potential formulation can be partly retained. The method is applied to
a simple test case. The 3D extension is briefly discussed as well.

INTRODUCTION

For 2D magnetostatic and magnetodynamic field computations by
means of the FE method, the magnetic vector potential formulation,
in which the potential a can be reduced to a scalar quantity, is almost
invariably adopted. Unlike its scalar potential counterpart, its elabo-
ration and implementation are very simple as no source fields and/or
cuts have to be introduced [1]. However, the scalar potential formu-
lation may offer a considerable advantage when a hysteresis model is
to be considered in some parts of the FE model, as most hysteresis
models take the magnetic field vector h = −grad φ as input [1].

In the 3D case, the vector potential cannot be reduced to a scalar
field, and various formulations, based on various magnetic and electri-
cal potentials, have been proposed. Hybrid scalar and vector potential
formulations, e.g. [2], are rarely used.

In this paper an original approach to the 2D hybrid a − φ formu-
lation is elaborated and validated by means of a simple test case. The
extension to 3D formulations is straightforward, as will be discussed.

2D FORMULATIONS

We consider a bounded domain Ω in the xy-plane of the 3D Eu-
clidean space. (The unit vectors along x, y and z axis are denoted x,
y and z.) The z-component of both the magnetic field vector h and
the induction vector b vanishes. The latter are related through the per-
meability µ and reluctivity ν = µ−1. In the subdomains Ωs and Ωc,
the current density j = j(x, y, t) z , along the z-axis, is imposed and
induced respectively. In domain Ωc, Ohm’s law j = σe applies, with
e the electric field and σ the conductivity.

Vector potential formulation

The induction b = curl a = z × grad a and the electric field
e = −∂ta derived from any continuous one-component potential a =
a(x, y, t) z satisfy the magnetic Gauss law div b = 0 and Faraday’s
law curl e = −∂tb. After partial integration, on account of curl a ·
curl a′ = grad a · grad a′, the weak formulation of Ampère’s law
curl h = j can be written as

(νgrad a, grad a′)Ω + (σ∂ta, a′)Ωc + 〈ht, a
′〉∂Ω = (j, a′)Ωs ,

∀a′ ∈ Fa(Ω) , (1)

where Fa(Ω) is the function space defined on Ω containing the basis
functions for a as well as for the test functions a′; (·, ·)Ω and 〈·, ·〉∂Ω

The work has been carried out in the frame of the Interuniversity Attraction Poles IAP
P5/34, funded by the Belgian federal government. P. Dular and C. Geuzaine are Research
Associate and Postdoctoral Researcher respectively with the Belgian National Fund for
Scientific Research (F.N.R.S.). L. Vandevelde is a Postdoctoral Fellow with the Fund for
Scientific Research - Flanders (Belgium)(F.W.O.-Vlaanderen).

denote the surface integral in Ω and the line integral on the boundary
of Ω of the (scalar) product of their (vector) field arguments. The
integral on ∂Ω comprises the tangential magnetic field ht = h · t with
t = z × n , where n is the outward pointing normal on ∂Ω.

The electrical circuit coupling of the current carrying regions in
Ω can be easily elaborated [1]. Consider e.g. ns stranded conductors,
i.e. domainsΩsk , k = 1, . . . , ns, in which the current density is deter-
mined by given normalised functions jk(x, y) and the strand currents
Ik(t): j(x, y, t) = jk(x, y)Ik(t). The corresponding flux linkage
and the electromotive force are Φk(t) = (lza(x, y, t), jk(x, y))Ωsk

and Ek(t) = dΦk
dt

respectively, where lz is the axial length. Massive
conductors can be treated in an equally straightforward manner.

Scalar potential formulation

A single-valued scalar potential φ(x, y, t) can be considered in a
subdomainΩφ if the latter is current-free (j = 0) and if the circulation
of h along any contour C in Ωφ is zero (

∮
C

h · dl = 0). The derived
magnetic field h = −grad φ satisfies Ampère’s law curl h = 0. The
weak formulation of div b = 0 in Ωφ reads

(µgrad φ, grad φ′)Ωφ + 〈bn, φ′〉∂Ωφ
= 0 , ∀φ′ ∈ Fφ(Ωφ) , (2)

with bn = b · n , where n is the outward pointing normal on ∂Ωφ.
When the scalar potential φ is multi-valued, which generally is

the case in a multiply connected domain [3], some cuts allowing dis-
continuities of φ have to be introduced in Ωφ, which is thus made
simply connected and in which a single-valued scalar potential can be
defined. A minimum number of cuts, equal to the number of holes
in Ωφ, is usually introduced in order to avoid linear dependence. The
discontinuities∆φ accross the cuts are equated to the driving magne-
tomotive forces, thus strongly imposing Ampère’s law in the complete
domain Ωφ.

Hybrid formulation

The domain Ω is split up into two complementary domains, Ωa

and Ωφ, in which the vector and the scalar potential formulation re-
spectively are adopted. Ωs and Ωc are subdomains of Ωa.

In the present approach, the domain Ωφ is further split up into
an arbitrary but sufficiently large number of simply connected subdo-
mains Ωφi , i = 1, . . . , nφ, in each of which a single-valued scalar
potential φi, with h = −grad φi, is defined. The circulation of h
along a closed contour C situated in several Ωφi is weakly imposed
via the coupling of the scalar potentials φi with the vector potential
a. Hereto, a is defined in Ωa and on all the boundaries ∂Ωφi , includ-
ing the two-layer surface of each cut. Cuts are therefore only defined
in Ωφ and do not necessarily meet the inductor regions, unlike in the
h − φ formulation [4].

A practical case with nφ = 2 is shown in Fig. 1. It concerns e.g.
the cross-section of a single-phase transformer, the magnetic core of
which is split up in Ωφ1 and Ωφ2 . (Note that in this case, the number
of cuts could have been limited to one.) On the two dashed lines in
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Fig. 1, which connect the inner to the outer part of Ωa, all three po-
tentials a, φ1 and φ2 are defined. In order to ensure their uniqueness,
they have to be fixed in exactly one point in their domain of definition
(when disregarding possible Dirichlet boundary conditions).

Ωa

a=0

Ωa
z

y

φ2=0

φ1=0

Ωφ2

n

nt

j �= 0
x

j �= 0

Ωφ1
t

C

Fig. 1: Definition of the domains Ωa and Ωφ = Ωφ1∪ Ωφ2

On account of −ht = −t · h = t · grad φi and bn = n · curl a =
t · grad a, the weak forms (1) and (4) become for Ωa and Ωφi (i =
1, . . . , nφ) respectively:

(νgrad a, grad a′)Ωa + (σ∂ta, a′)Ωc +

nφ∑
i=1

〈t · grad φi, a
′〉∂Ωφi

+ 〈ht, a
′〉

∂Ωa\∪nφ
i=1∂Ωφi

= (j, a′)Ωs , ∀a′ ∈ Fa(Ω) , (3)

(µgrad φi, grad φ′
i)Ωφi

+ 〈t · grad a, φ′
i〉∂Ωφi

= 0 ,

∀φ′
i ∈ Fφi(Ωφi) , (4)

with t = z × n and n the outward pointing normal on ∂Ωφi .
Note that the contribution of the cut regions to the first term of (3)

tends to zero as the thickness of these regions tends to zero as well.
An advantage of the proposed hybrid formulation is that the elec-

trical circuit coupling of the a formulation can remain as it is. Indeed,
as the circuit coupling concerns current carrying domains in Ωa only
and as the vector potential a is continuous throughout Ωa (having a
single reference point a = 0), the additional terms and equations are
not affected by the coupling with the scalar potentials φi.

Consequently, no basis function have to be defined and associated
with each cut for considering the currents and voltages of the induc-
tors [4]. Furthermore, no source fields have to be calculated for the
stranded inductors [5].

In 3D computations, one can benefit from the hybrid approach
by limiting the magnetic vector potential domain Ωa to the inductors.
The cuts will then meet the inductor boundaries and will therefore
have the same form as those defined in the h − φ formulation. Their
number does not have to be limited.

2D APPLICATION EXAMPLE

The plain a formulation and the proposed hybrid formulation have
been applied to a simple 2D test case, which is analogous to the sit-
uation shown in Fig. 1. A constant magnetomotive force of 1A is
enforced with a coil, one side of which is situated in the hole of the
magnetic core. Magnetostatic calculations with several meshes and
first order interpolation of a, φ1 and φ2 have been carried out. Some
isolines of a, φ1 and φ2 are depicted in Fig. 2. The normalised flux
linkage calculated with the a and the a−φ formulation is depicted in
Fig. 3 as a function of the total number of degrees of freedom. The
two curves clearly converge to each other.

Fig. 2: Isolines of a obtained with the a formulation, and isolines of φ1 and
φ2 obtained with the a − φ formulation

As can be seen in Fig. 4, the circulation of h along a contour
C encircling the coil (see Fig. 1) is not exactly the driving 1A. The
deviation depends on the position of the contour and is in average
zero. The amplitude of the error decreases as the FE mesh is refined.
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Fig. 3: Normalised flux calculated with the a and the a − φ formulation, as
a function of the total number of degrees of freedom
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Fig. 4: Circulation of h along the contour C minus 1A as a function of
the position of the contour (between the inner and the outer boundary of
the magnetic core) obtained with the a − φ formulation and three different
meshes

In the extended paper, the 3D case will also be elaborated in more
detail and a 3D application will be considered.
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Abstract – Parallel processing has been widely promoted as a feasible, 
and even promising, solution to the very high computational demands of 
practical h-p adaptive finite element analysis for electromagnetic device 
design and system performance simulation.  A combination of emulated 
and empirical studies designed to explore the validity of these claims are 
presented and compared.  Practical parallel processing efficacy results, 
computed using a pair of interconnected Sun E450 and v880 platforms 
(4 processors each), are reported.

INTRODUCTION 

Concurrent, combined and integrated h- and p-refinement 
adaptive finite element analysis (AFEA) for electromagnetics 
has become increasingly important over this past decade, and 
now represents a reasonably mature and well-established area 
of computational engineering research.  Current views on this 
subject widely acknowledge the broad potential of intelligent 
h-p adaption, as well as, the computational complexities and 
bottlenecks associated with guiding the evolution of practical 
and effective h-p discretizations.  Recent work has proposed 
that parallel computing should be well suited to managing, or 
even circumventing, the computational difficulties associated 
with implementing and controlling the key adaptive feedback 
processes [1][2].  While the primary techniques and strategies 
of AFEA for engineering electromagnetics are well-defined 
[3], definitive and categorical contributions on h-p adaption 
for 3-D applications remain rather limited [4], and practicable 
contributions on 3-D h-p AFEA for workstation-level parallel 
and distributed computing environments are not available [5].  
Serial computing work on 3-D h-p AFEA has mainly focused 
on resolving the difficulties related to: implementing flexible 
high-order h-p edge-elements [6][7]; building effective initial 
h-p meshes [8][9]; developing effective and efficient mesh 
discretization refinement strategies [10][11]; and, improving 
local AFEA error estimators [3][4][12].  While, parallel and 
distributed computing contributions for general AFEA have 
focused on the difficulties inherent to: discretization domain 
decomposition [13][14]; computational task load balancing 
[15][16][17]; database structures and management [18][19]; 
data communications management [20][21]; software design, 
prototyping and development environments [19][22][23]; and 
solver design [24].  While it seems clear that all the essential 
ingredients are available [4], a recipe for combining them into 
a practicable h-p AFEA system for effective 3-D engineering 
electromagnetics in any realistic type of parallel or distributed 
computing environment remains absent [5].  It should also be 

noted that the bulk of all research contributions on 3-D h-p
AFEA is founded almost exclusively on hexahedral elements, 
and it is limited to fully-conforming or 1-irregular (at most) 
formulations [5][18][22].  Unlike in computational mechanics 
applications, tetrahedral elements are commonly preferred for 
electromagnetics AFEA, and “irregular-cut” formulations are 
now known to provide the greatest modeling and refinement 
flexibility for tetrahedral h-p discretizations [25][26]. 

The purpose of this contribution is to summarize the main 
state-of-the-art research directions which are currently under 
investigation for parallel and distributed processing methods 
designed for h-p AFEA of electromagnetics problems; outline 
their theoretical foundations; and then investigate the validity 
of their results empirically, using direct controlled testing and 
actual runtime experimentation with a practical, workstation-
level, parallel and distributed computing environment. 

TEST ENVIRONMENT AND PROCEDURES

The AFEA parallel processing test environment consists of 
two primary elements:  a highly adaptable parallel computing 
emulator, designed to simulate, monitor and assess processor 
to processor communications scheduling overhead and costs; 
and, a highly configurable parallel and distributed processing 
system, based on a side-by-side integrated pair of 4-processor 
workstations, which are directly connected together through a 
dedicated gigabit optical communications link.  The emulator 
software was developed specifically for this hardware system, 
and it is designed to be able to simulate and trace the runtime 
operation of the core parallel platform, together with a locally 
connected set of satellite serial workstations, for all possible 
configurations.  Through this combination of test bench tools, 
it is possible to both:  accurately assess the actual start-to-end 
runtime performances of h-p AFEA parallel implementations, 
on a range of practical platform configurations; and, to trace, 
investigate and evaluate the details of the runtime operations 
overhead, communication costs and system bottlenecks.  This 
combination of empirical and simulated runtime information 
is proposed to facilitate the accurate and reliable assessment 
of the impact of parallel processing on practical h-p AFEA. 

The hardware implementations are based on the Sun E450 
(Enterprise 450) and Sun v880 parallel processing computers, 
locally networked together with a cluster of five serial work-
stations, through a 100-Mbit switch.  These parallel machines 
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support four independent, fully accessorized, processors each 
(480-700MHz; 1-2Gb Ram; 30-48Gb disk).  The full study is 
intended to examine a broad representative range of practical 
parallel and distributed processing configurations for AFEA. 

ILLUSTRATIVE RESULTS

One of the most significant performance characteristics for 
most parallel processing systems is communications overhead 
and transmission cost.  For AFEA implementations on certain 
platforms (e.g. AVX Series 2), transaction initialization costs 
alone can outweigh the potential computational advantages of 
evaluating elemental error estimators in parallel – even if data 
transmission costs are negligible.  The results in Table I show 
the potential ramifications of this performance characteristic 
for a range of AFEA error estimator implementations.  In this 
study, an 8-processor configuration (1 control + 7 compute 
nodes), with fixed cost communications, is considered.  Even 
for this idealized environment, it is noteworthy that the best 
numbers of compute processors (and resulting speedup), for a 
given level of communications overhead, is not obvious.  For 
more practical parallel AFEA environments, which integrate 
added computational requirements (e.g. mesh refinement and 
discretization convergence analysis), performance prediction 
is more difficult.  A variety of less obvious and more in depth 
cases will be reported at the conference and in the long paper. 

Table I.   Normalized Cost of Full Mesh Error Estimation Computation 1

One-way Control-Compute Communications Cost 2Number of 
Compute  

Processors 3 3% 6% 9% 12% 15% 18%

2 0.59 0.68 0.77 0.86 0.95 1.04
3 0.45 0.57 0.69 0.81 0.93 1.08
4 0.40 0.55 0.72 0.96 1.20 1.44
5 0.38 0.60 0.90 1.20 1.50 1.80
6 0.38 0.72 1.08 1.44 1.80 2.16
7 0.42 0.84 1.26 1.68 2.10 2.52

1 Cost expressed relative to error estimation computational cost for full mesh, 
via single-processor (serial processing), which has been normalized to 1.00. 

2 Cost columns denoted by percentage of total serial processing cost for full 
mesh; initialization + transmission for one-way communication represented. 

3 Only compute processor nodes counted; control processor is not included.
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Abstract– A novel 2-level dual rank SVD algorithm is described 
in this paper to significantly reduce the memory consumption and 
CPU time for EFIE formulation for solving PEC scattering 
problems. It is shown, with the number of groups chosen to be 
proportional to N1/2, where N is the number of unknowns, the 
memory and CPU time for the resulting algorithm are both 
O(N3/2). Also, presented in this paper is a “mesh-neighboring” 
preconditioner. This “mesh-neighboring” preconditioner when 
used in conjunction with GMRES is proven to be both efficient 
and effective for solving the compressed matrix equations. 

I. INTRODUCTION

The solution of large-scale electromagnetic (EM) 
scattering problems by the method of moments (MoM) is 
burdened by the creation and storage of a dense system 
impedance matrix. For a general MoM problem using N 
basis functions, the computational complexity is O(N2) for 
filling the N N� matrix, storing it, and solving the matrix 
equation via an iterative algorithm such as GMRES. This 
paper presents a new algorithm, a 2-level dual rank singular 
value decomposition (SVD), for efficiently compress the 
MoM matrix to reduce the memory requirement, matrix fill 
time, and the time of the iterative solution. The unique 
feature of the proposed approach is that the compression is 
achieved without assembling the entire matrix. 

II. EFIE FORMULATION FOR SCATTERING PROBLEMS

Application of the Galerkin method to the electric field 
integral equation results in 
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where D is the problem domain or the scatterer, 0k
c
�

� is

the free space wavenumber, R r r�� �

� �

the distance 

between observation and source points, and 377cZ � � is
the characteristic wave impedance in free space. In the 
current work, we have employed surface div-conformal 

vector basis functions for J
�

, namely the RWG basis 
functions [1].  

III. 2-LEVEL DUAL RANK SVD ALGORITHM

The dual rank SVD algorithm is based on the rank 
deficiency feature of the integral equation for well-separated 
groups of basis functions [3]. The algorithm factorizes the 

local matrix ij
nmZ

�

due to the groups i and j into ij
rmQ

�

and 
ij

nrR
�

matrices without a priori knowledge of ,Zij
nm�

where
m and n are the number of receiving and transmitting basis 
functions, respectively, and r is the rank of interaction: 

� �

1

2
1 2

ij ij ij
m n n m r r n

m

Z z z z Q R

�

�

�

� � �

� �

� �

� �
� � � �

� �

� �

� �� 	

(2)

Here, pz is the column vector due to the pth transmitter 

and q� is the row vector due to the qth receiver. Note that the 

SVD matrix, � �
SVD

m r r nm n
Z Q R

� �
�

� � , is still a dense matrix. 

However, instead of forming � �
SVD

m n
Z

�

explicitly, any matrix 
vector multiplication operation is performed first by 
multiplying R followed by the multiplication of the Q matrix. 
In this fashion, the operational count is proportional to 
� �r n m� rather than brute force nm operations. 

Significant saving in memory as well as computational time 
will be achieved when the rank r is sufficiently smaller than 
n and m.

IV. MESH-NEIGHBORING PRECONDITIONER

In this section, we consider the efficient solution of 
dense linear system � �

SVD
�Z x b by preconditioned 

iterative methods, particularly GMRES method. An 
insightful discussion of three types of preconditioners, the 
operator splitting preconditioner (OSP), the least squares 
approximate inverse preconditioner (LSAI), and the 
diagonal block approximate inverse preconditioner 
(DBAI), for dense matrices arising from the application of 
BIEs is provided in Ref. [4]. The “mesh-neighboring” 
preconditioner proposed in the current work is based upon 
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a two-step process. In the first step, we extract from the 
full impedance matrix, � �

SVDZ , a sparse version, � �
� �

sZ ,

which includes the near range interactions as well as a 
heuristic bias toward geometrical singularities. Once the 
sparse matrix, � �

� �

sZ , is obtained, the final preconditioner, 

� �M , will be formed through an incomplete factorization 

with a heuristic dropping strategy. 

V. NUMERICAL RESULTS

To demonstrate the efficiency and validate the current 2-
level SVD approach, we have conducted studies on two 
numerical examples. One is an open cone PEC scatterer, 
shown as inset in Figure 1, whose height and diameter of the 
bottom are 20 cm. The second example is the Northrop 
VFY218 airplane as discussed in [6]. In both examples, we 
employed a constant, as constant as we possibly can, mesh 
density of 5 elements per wavelength. To study the memory 
and CPU time complexities of the novel 2-level dual rank 
SVD algorithm, we increase the operating frequencies and 
subsequently enlarge the problem sizes. The memory 
consumption and CPU time of the SVD process are shown in 
Figure 1, and they both exhibit O(N3/2) complexity. 
Moreover, the approximation in the SVD process, using a 
tolerance of 10-2, does not affect the solution quality, as 
evidenced in Figure 2. The results computed by the SVD and 
those obtained from full EFIE matrix are in very good 
agreement. Finally, in Table 1, we summarize the 
computational details of the application of the proposed SVD 
algorithm to the VFY218 airplane example. Note that, it only 
took 5 hours and 30 minutes to assemble the SVD matrix for 
101,352 unknowns, and it further took (on average) 45 
minutes for every incident angle on a Pentium 4, 1.2 GHz, 
PC with 2GB RAM. 

Figure 1: Memory and CPU complexities for the IE-
SVD for an open cone, height 20 cm and diameter 20cm 
on the bottom, scattering example. 

Figure 2: Monostatic RCS results from dual rank SVD 
algorithm compared to the full MOM results for the 
cone example with 11,970 unknowns. 

Table 1: Computational details of the 2-level SVD 
algorithm for the Northrop VFY218 airplane. 
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Abstract— We study systematical detection of the state
variables for a general coupled circuit-field problem that
may consist of several disjoint domains for field problems
and electric networks. The objective is to cast the prob-
lem into a framework whose structures are readily pro-
grammable. To couple the field and circuit sides in terms
of computable concepts, we employ homology theory, which
leads to linear algebraic problems.

Keywords— Coupled problems, homology, exact homology
sequence

I. Introduction

Our interest is in finding a technique which tackles a gen-
eral coupled circuit-field problem and naturally translates
to software. The properties of topologically non-trivial re-
gions are systematically treated with tools of so-called ho-
mology. Their use in the current context has been previ-
ously discussed e.g. in [1], [2], [3], [4], [5], together with
their intimate connection with analysis of fields.

The approach produces information about the non-
trivial topology inside the field-domains, how networks are
connected to a certain field domain and how the field-
domains and distinct networks are interconnected to form
the coupled problem. In order to detect the appropriate
state variables for the coupled problem, we need to orga-
nize the data into a useful entity. This is accomplished
with the exact homology sequence [6].

Example 1: Figure 1 shows a simplified model problem,
two galvanically isolated circuits connected to a trans-
former. The integral of E over the curve h1 equals to the
voltage at the terminals of C1 and the integral over h2 to
the voltage at the terminals of C2. They are needed as
state variables, but what about the voltage over h3?

Intuitively, the voltage over h3 doesn’t count, because
the circuits are galvanically isolated. However, we aim
at automatic computation of coupled circuit-field problem
without user intervention, and computers have no intuition.
The computer is to solve the potential difference between
every two nodes of the circuit problem, including the volt-
age over h3. However, the voltage over h3 is clearly not de-
termined by the circuit. What is the role of h3 in automatic
computation? What to do with it and how to recognize it
automatically?

II. Problem description

The model problem belongs to the problem class we
address with algebraic—programmable—analysis; coupled
problem consisting of circuit part C and field problem do-

Ω

h1C1 C2h2

h3

Fig. 1. Transformer as a model problem.

main Ω, both possibly in several disjoint components. We
assume that both are tessellated into cell complexes (FEM
mesh and circuit graph), and call also the complexes C
and Ω. Terminals of the circuit are connected to the field
problem with connectors Γ = C ∩ Ω. Components of Ω
may be multiterminals, such as the transformer in figure 1.
We define Γ0 such that ∂Ω = Γ ∪ Γ0 and Γ ∩ Γ0 is one-
dimensional.There are n components of circuit and β0 com-
ponents of Ω, each component Ωi with ki connectors, and
they are all connected into one coupled problem.

III. Separation into field and circuit problems

The field part of the problem has to satisfy the follow-
ing requirements in order to be an appropriate model of a
circuit component: i) Magnetic isolation, i.e. no magnetic
flux, across ∂Ω, ii) no current flow through Γ0, and iii)
connectors Γ are equipotential surfaces [4]. Inside Ω, the
quasistatic Maxwell’s equations hold.

The circuit analysis rests on Kirchhoff’s voltage and cur-
rent laws. The voltage law imposes zero electric circulation
over the loops of the circuit1. Some of these loops may pass
through Ωi, and we need to express the corresponding volt-
ages. The voltage between any two of the ki connectors in
Ωi can be expressed with a combination of ki − 1 curves2,
if the combinations of the curves have no boundary out-
side Γ, and they couple any two connectors. These curves
are formally a set of generators of the group of 1-cycles,
which are non-bounding relative to Γ (i.e. the first relative
homology group modulo Γ), H1(Ω, Γ). It is an example
of relative group, inherent to the analysis of circuit-field
coupled problems [1], [2].

The Kirchhoff current law in Ω is a statement concern-
ing the currents through surfaces of H2(Ω,Γ0) [1], [2]. Its
close relation to H1(Ω, Γ) establishes a power equivalence
which leads to the concepts of impedance and Thevenin

1It suffices to pose this condition on all linearly independent loops.
2The concept of potential only makes sense on the boundary ∂Ω,

and the curves actually reside on Γ0 [3].
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equivalence. [3], [5]
Example 2: In the model problem of figure 1, we need

the voltages
∫

h1
E and

∫
h2

E to pose the Kirchhoff’s voltage
law for all loops. The curve h3 is not needed in expression
of any loop, hence its voltage is not determined by any
loop of the circuit. The automated computation of the
model problem requires at least i) computation of h1, h2,
and h3, ii) computation of loops, iii) detection of curve h3,
with indeterminate voltage, iv) solution: computation of
voltages over of h1, h2 with the voltage over h3 fixed.

Another example motivates exhaustive analysis:
Example 3: Generally, the computation of h1, h2, h3 dif-

fers from computing H1(Ω, Γ), because the non-bounding
cycles of Hp(Ω) add to Hp(Ω,Γ): The group Hp(Ω) con-
tains cycles, which have zero boundaries—no boundary
outside Γ!

IV. Tools for analysis of entire problem

Our problem involves several complexes, Ωi, Ω, C, and
Γ, which contribute to groups needed in circuit analysis,
i.e. the loops of the whole problem in H1(Ω∪C), and their
segments in H1(Ω, Γ) and H1(Ωi, Γ).

Let A be a complex and B its subcomplex. The following
results [6] for relative groups hold for A and B:

B

B
2c

1

c
2

A

1

.1
p

.p2

Fig. 2. Example of a complex and its subcomplex.

1. Each element c ∈ Hp(B) either qualifies as an element
c ∈ Hp(A) or is generated by a boundary c = ∂p+1r̃ of an
element r ∈ Hp+1(A,B).
Example 4: In figure 2, a point p1 at B1 is a generator
of H0(B). This also generates H0(A) (if p1 is chosen, no
other point will do anymore). An arbitrary point p2 at B2

is p2 = p1 + ∂c2 for any curve c2 from p1 to p2. This c2 is
a generator of H1(A,B).
2. The generators of Hp(A), which are not homologous to
an element of Hp(B) constitute elements of Hp(A, B).
Example 5: If there was a circular, annular, or toroidal
component of B encircling the hole in A of figure 2, c1 ∈
H1(A) would be homologous to some element of H1(B).
This is not the case. Hence, it is a generator of H1(A,B):
c1 has no boundary outside B.
3. The elements of Hp(A,B) which do not qualify as ele-
ments of Hp(A), have boundaries which generate Hp−1(B).
Example 6: Hp(A,B) is generated by {c1, c2}. c1 ∈ H1(Ω)
holds, and example 4 shows why ∂c2 generates H0(B).

This triple of results is the exact homology sequence [6],
and we utilize it to systematically study coupled problems.

We now relate the homological properties of the field
problem and the coupled problem: The nonbounding
curves which generate Hp(Ω, Γ), generate Hp(Ω, C) as well,
because any modifications to the curves inside C are as ir-
relevant as the modifications in Γ. The groups are, in a

sense, identical. This reasoning extends to Hp(Ω∪C, C) as
well, and the isomorphisms Hp(Ω, Γ) ∼= Hp(Ω ∪ C,C) and
Hp(Ωi, Γ) ∼= Hp(Ω ∪ C, (Ω − Ωi) ∪ C) establish the other
cornerstone of our method.

V. Analysis of the model problem

The computation of the field problem-side groups,
Hp(Γ), Hp(Ω), Hp(Ω,Γ), Hp(Ωi), and Hp(Ωi, Γ) require ho-
mological computation. Only graph theoretic methods are
needed at the circuit side, as they yield special cases of
homological constructions.

The model problem has no holes through the field part,
i.e. H1(Ω) = 0. There is one component in Ω (i.e. β0 = 1),
with dim(H0(Γ)) =4 connectors, and Ω1 = Ω holds. Then
H1(Ω, Γ) has

∑β0
i=1 ki − 1 = 3 generators, some of which

may be parts of circuit loops.
The circuit part C has dim(H1(C)) = z loops, and

dim(H0(C)) = n = 2 components. For the whole prob-
lem, dim(H0(Ω ∪ C)) = 1 holds. From the isomorphism
H1(Ω, Γ) ∼= H1(Ω∪C,C) we know that dim(H1(Ω∪C,C))
equals to 3. There are (

∑β0
i=1 ki − 1) − n + 1 + z = z + 2

independent circuit loops which generate H1(Ω ∪ C), and
2 of these pass through Ω.

Two loops of H1(Ω ∪ C) pass through Ω1, and we can
project these loops onto the elements of H1(Ω1, Γ). When-
ever a loop contains an element of H1(Ω1, Γ), the voltage
over that element can be deduced with KVL from a loop
completed in (Ω − Ω1) ∪ C. Because dim(H1(Ω1,Γ)) = 3,
but two loops pass through Ω1, one generator of H1(Ω1, Γ),
h3, corresponds to an indeterminate voltage3. The assigned
voltage over this generator adds a link between the two
components of (Ω−Ω1)∪C, lowering dim(H0((Ω−Ω1)∪C))
to one. In the general case, voltages are assigned until
dim(H0((Ω − Ωi) ∪ C)) = 1 holds for every i.

The analysis illustrates the use of exact homology se-
quence for coupled problems. The technique enables us to
detect the appropriate state variables and express the effect
of the assigned voltages in precise terms.
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Abstract – A novel neural network (NN) approach is presented to 

compute accurately derivatives of numerical solutions to 3D 

electromagnetic problems. The adopted NN is a Multi Layer Perceptron, 

whose training is performed off-line by employing a class of suitably 

selected polynomial functions. The desired degree of accuracy can be 

chosen by the user by selecting the appropriate order of the training 

polynomials. The on-line utilization of the trained NN allows us to obtain 

accurate results with a negligible computational cost. Comparative 

examples of differentiation performed both on analytical functions and 

FE solutions are given in order to illustrate the computational 

advantages. 

 

INTRODUCTION 

The differentiation of numerical solutions to 3D 
electromagnetic problem is often used in post-processing for 
the evaluation of typical local and global quantities, such as 
forces, energy, charges and others. Several techniques have 
been developed to evaluate accurate estimates of derivatives 
even in case of rough numerical solutions, but some 
limitations make these methods either not easily utilizable, 
because of stringent hypotheses on which they are based, or 
not easily implementable and computationally expensive 
[1][2][3]. 
In this paper a new procedure based on a neural approach is 
illustrated to compute accurate estimates of derivatives of  
numerical solutions to 3D Electromagnetic problems at an 
arbitrary point P, exploiting the knowledge of the values of 
the solution at a few points, in the neighbourhood of point P.  
An important feature of this approach is that the training of 
the neural network is performed off-line by employing a class 
of suitably selected polynomial functions, in such a way that 
the desired degree of accuracy of the neural model is 
established during the training phase, by choosing the 
appropriate degree of the training polynomials. The on-line 
utilization of the trained ND allows us to obtain accurate 
results with a negligible computational cost. A further 
advantage of this neural model is its easy implementation in 
existing post-processing modules. 
 

THE MLP NN DIFFERENTIATOR 

The neural differentiator is based on a Multi Layer Perceptron 
(MLP) neural network and foresees as inputs the values of the 
function at some selected points belonging to the 
neighbourhood of an arbitrary point P and as output its 
derivatives at P. 
The positioning of the input points around P has been chosen 
on the basis of simplicity and uniformity of coverage by using 
a minimum number of input points. Satisfactory results have 
been achieved by using the point disposition shown in fig. 1. 

After several experiments on some tentative MLP networks 
employing various different topologies, the network 
architecture was established; it foresees 3 hidden layers 
suitably interconnected. 

 
Fig. 1. Disposition of the Neural Network Differentiator input points. 

 
The neural network has been trained off-line by providing to  
it a set of suitably chosen polynomial functions P(x, y, z)  in 
3D space in such a way that the neural network learns the 
relationship between the polynomial function on the input 
points and its derivatives in P.  
An advantage of this off-line training is its modularity with 
respect to the polynomial functions degree and flexibility in 
pattern generation, allowing us to reduce effectively the 
number of training functions required to reach a target 
precision. The details of MLP NN structure and its training 
phase will be described in the full paper. 
The precision reachable by this neural differentiator depends 
on the order of the polynomials used in the training phase, as 
will be shown in the next section. 
 

RESULTS 

The trained neural differentiator (in which the weights are 
already established during the training) is used as a traditional 
post-processing operator acting on data from either a 
numerical solution or a known analytical function.  
The accuracy of MLP neural differentiator (ND) has been 
tested first by comparing its results against the analytical 
derivatives of the following function   
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In order to assess the achievable level of accuracy of the 
neural differentiator various MLP ND evaluations employing 
a different number of input points have been performed. In 
particular the values of the first derivatives of the above 
function with respect to spatial coordinates at about a 
thousand points randomly assigned have been analytically 
computed and then compared with those evaluated by using 
three different MLP NDs with an increasing number of input 
points. 
Table I reports the derivatives relative error and its mean 
value in correspondence of test points for the three MLP NDs 
trained with polynomials up to 4th degree employing a 
different number of input points (34, 40, 52). As expected, the 
degree of accuracy increases by adopting an higher number of 
input points.  

Table II reports the maximum and average errors in 
derivatives computation for four MLP NDs having each a 
fixed number of input points (52), but trained by using 1st, 2nd, 
3rd and 4th order polynomial functions respectively. The 
results show that the level of accuracy is closely linked to the 
degree of the polynomials used during training.  
 

TABLE I – AVERAGE AND MAXIMUM ERROR IN DERIVATIVES COMPUTATION 

FOR MLP ND TRAINED WITH POLYNOMIALS UP TO 4TH DEGREE EMPLOYING 

DIFFERENT INPUT POINTS 

 Average error Maximum error 

34 points 1.57⋅10-4 3.23⋅10-4 

40 points 5.40⋅10-5 1.05⋅10-4 

52 points 2.10⋅10-5 7.18⋅10-5 

 

TABLE II – AVERAGE AND MAXIMUM ERROR IN DERIVATIVES COMPUTATION 

FOR MLP ND EMPLOYING 52 POINTS TRAINED RESPECTIVELY WITH 1ST, 2ND, 

3RD AND 4TH DEGREE POLYNOMIAL FUNCTIONS 

 Average error Maximum error 

Up to 1st  degree 0.73⋅10-2 1.80⋅10-2 

Up to 2nd degree 3.40⋅10-3 0.68⋅10-3 

Up to 3rd  degree 2.69⋅10-4 5.17⋅10-4 

Up to 4th  degree 2.10⋅10-5 7.18⋅10-5 

 

Hereafter the application of the trained differentiator to rough 
FE solutions for the computation of local electromagnetic 
quantities is presented. This example regards the evaluation of 
the electric field inside the collector region of a travelling 
wave tube (TWT), a vacuum electron device used as RF 
amplifier. In the collector region, recovering the spent beam 
energy, a steady state electromagnetic analysis is performed 
involving the 3D FE solution of a Poisson equation for the 
scalar electric potential having as source term the space 
charge density of the spent electron beam. The analysed 
collector, consisting of only one asymmetric stage, has been 
discretized by using a mesh of 5880 tetrahedral finite 
elements. The electron trajectories shown in figure 3 have 
been computed by COCA, a tool appositely developed by the 
authors for the 3D electromagnetic simulation of TWT 
collectors [4]. These trajectories define the space-charge 
source term of the Poisson equation. Two finite element 
solutions were computed: the first one related to a 
discretization employing 1st order tetrahedra and the other 
employing 2nd order tetrahedra. 

 

 

Fig. 2. The analysed TWT collector region, including 3D space charge source 

term. 

 
Fig. 3. Z-axis longitudinal electric field values computed by means of FE 

solution direct differentiation and MLP Neural Differentiator post-processing 

approach. 

 

Figure 3 shows the results of the computation of the 
interesting local quantity, the on-axis longitudinal (z-directed) 
electric field Ez, performed by following two different 
approaches, the first by using straightforward differentiation 
of the 1st order and 2nd order FE solutions and the other by 
applying a MLP Neural Differentiator to the rough 1st order 
FE solution. These latter results refer to evaluations 
performed by using 52 input points disposed as shown in fig. 
1. Even in  such a non-trivial problem, exhibiting 3D space 
charge distribution and complicated geometry, the increase of 
accuracy due to utilization of MLP ND is remarkable. 
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Abstract In the computation of  eddy current fields with edge 
elements it is known that the numerical stability can be rather inferior
for the -formulation, in comparison to that of the -formulation.
In this paper, the differences of the two formulations with regard to the 
convergence of an iterative solver will be pointed out. The results is a 
suggestion about the preconditioner for the conjugate gradient method.

*A , vA

INTRODUCTION

In the numerical analysis of three-dimensional eddy
current problems, the finite element method (FEM) with edge 
elements is very common. Various formulations for the vector
and the scalar potential have been reviewed in [1]. In the 
transient case, time stepping is used for the time
discretization. In every time step a large system of equations
has to be solved.

Two common formulations for the eddy current problem
are the -formulation and the -formulation. The 
advantage of the -formulation in FEM applications
using iterative solvers like a preconditioned conjugate
gradient method (PCG) is its good numerical stability. For the

-formulation, the numerical stability can be rather inferior.

*A , vA
, vA

*A
In high-frequency problems, some small negative 

eigenvalues arise which deteriorate the convergence rate [2].
In case of quasi-static fields, it has been shown, that the good
convergence of the -formulation is due to the
preconditioning of the system matrix [3].

, vA

In this paper, we consider the case of transient eddy current 
fields. The different behavior of the PCG-method for the two
formulations is analyzed. A closer look is given to the kernel
of the curl-operator. As a preconditioner, the symmetric
Gauss-Seidel iteration is used (SGSCG).

FEM FORMULATIONS

The -formulation*A

One possibility to describe the eddy current field is by
means of a modified vector potential where

and

*A *curlB A
*

t
E A . This formulation leads to the differential

equation in the region

* *curl( curl ) 0   in 
t

A A . (1) 

Approximating the modified vector potential by edge basis
functions and applying Galerkin techniques to (1) results in
the following equation:

* *
0curl , curl , curl ,i h i h it

N A N A N T

n

(2)

for 1,2, , ei  with *
hA being the edge element

discretization of  and .*A ( , )a b da b

The -formulation, vA

In case of the -formulation, an additional modified
electric scalar potential  is introduced as 

, vA
v

grad v
t t

E A . The differential equations for this

formulation are:

curl( curl ) grad  in v
t t

A A 0 , (3) 

div grad 0 inv
t t

A . (4) 

Using edge basis functions for the vector potential and
nodal basis functions for the scalar potential, the Galerkin
equations can be written as 

0

curl , curl grad

curl ,  , 1, 2, ,

i h i h i

i e

v
t t

i n

N A N A N

N T

h (5)

grad grad grad 0,

1, 2, ,

i h i h

n

N N
t

i n

v
t

A
(6)

where  is the approximation of the scalar potential.hv

Time discretization

The time discretization with the backward-Euler scheme
leads to a system of equations

( ) ( ) ( 1) (1 1n n nA B B
t t

x x x ) , (7) nb

where t is the length of a time step,  is the vector of
unknowns at the time instant  and  is the right
hand side vector.

( )nx
t n t ( )nb
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KONVERGENCE OF THE PCG

A factor 
2h

t
can be defined to describe the ratio of 

the norms of the matrices A  and B , where h is a mesh size 
parameter. In Fig. 1 the dependency of the number of 
iterations on  is shown.

Fig. 1. Number of iterations vs. .

The distribution of the eigenvalues is similar for both 
formulations except the zero eigenvalues, which only appear 
in the , vA -formulation. In Fig. 2, the eigenvalues of the 
system matrix for different are shown. Since the 
eigenvalues of the system matrices arising in the *A - and the 

, vA -formulations are similar, the good convergence of the 
latter one is the consequence of preconditioning [3].

In each iteration step of the PCG algorithm, the error of an 
initial value is reduced. Expanding the new error in terms of 
the eigenvectors of the system matrix, the reduction of the 
components of the error, corresponding to the eigenvectors 
can be shown (Fig. 3).

Fig. 2. Eigenvalues for different . The upper curve belongs to 10 , the 

lowest one to 210

The reduction of the eigenvectors, belonging to the first 
200 low eigenvalues is very poor. For the *A -formulation, 
these eigenvectors describe the kernel of the curl-operator. 
They are responsible for the slow convergence. 

For the , vA -formulation, the first 200 eigenvectors 
describe the kernel of the system matrix arising from (5) and 
(6). These functions can be written as grad 0vA [4].  

It is clear that ker(curl)A . These functions don’t have any 
influence on the convergence since they are not in the range 
of the system matrix.  

Fig. 3. Ratio of the error components between two consecutive iteration steps 
versus order of the components. Left: *A -formulation, right: ,  vA -

formulation. 

The next 200 eigenvectors describe the divergence-free 

current density grad v
t t

AJ . It can be seen, that the 

divergence-free condition in (6) combines the scalar potential 
with the vector potential in a weak form. But this is done only 
for vector functions which can be described as a gradient of a 
scalar function. This means that these vector functions are 
part of the kernel of the curl-operator.

Moreover, (6) has the same weak form as the scalar 
Laplace equation, which works very fine with iterative 
solvers.

To sum it up it can be said that in one iteration step, (6) 
successfully reduces the error of the kernel of the curl-

operator, while (5) solves curl , curl h
i h i t

AN A N

0curl ,iN T for , ker(curl)h hN A . Both parts, 
ker(curl)A  and ker(curl)A are taken into consideration, 

resulting in an overall good convergence of the , vA -
formulation.  

Due to these facts, a preconditioner for the *A -formulation 
should also take the kernel of the curl-operator into 
consideration.
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Abstract – Sharp low-pass filters used to stabilize high-order 
numerical algorithms have been adapted to provide a simple yet robust 
absorbing boundary with negligible impact on the interior solution. By 
taking advantage of energy transfer to high frequencies caused by 
rapidly stretched meshes, the artificially reflected waves are annihilated 
while preserving the content in the region of interest.    

INTRODUCTION AND THEORY

Accurate simulation of wave propagation in different 
materials and environments is of great import to both civilian 
and military interests.   Due to large spatial scales relative to 
typical wavelengths of propagation, it is increasingly 
desirable to design methods that have low dispersion error 
and little or no dissipation.  One approach to this is through 
the use of high-order compact-difference schemes [1].  These 
schemes are typically 4th-order accurate or higher and exhibit 
spectral-like resolution [2].  The schemes lack of dissipation 
leads them to have a tendency toward spurious high-
frequency oscillations and instability.  This stability problem 
has typically been addressed by applying sharp, high-order, 
low-pass filters designed to destroy the high-frequency 
spurious waves.   

Vichnevetsky studied the behavior of a smooth solution as 
it passes through a sudden grid coarsening [3].  His analysis 
indicated that although total energy is preserved at the 
interface of the two grids, a significant portion of the energy 
is reflected.  This reflected energy was composed primarily of 
modulated odd-even modes. This artificial reflection 
propagates with a negative group velocity and, if left 
unchecked, has the potential to contaminate the entire 
solution. 

Visbal and Gaitonde used this idea to construct a simple 
absorbing boundary condition for acoustic and other fluid 
dynamics problems [4].  By employing a rapid rate of 
stretching, a significant amount of energy can be reflected 
back into the interior of the domain.  Provided this energy is 
deposited in the high-frequency modes, the baseline low-pass 
filters already being used to stabilize the solution will quickly 
dissipate it.  Since the buffer zone is rapidly stretched, the 
filter acts to quickly dissipate the transmitted wave as well.  
Thus the proposed boundary condition eliminates the need for 
more sophisticated (and likely less robust) formulations. 

M. D. White is a visiting scientist, Ohio Aerospace Institute (OAI/ICOMP). 
M.R. Visbal is a Technical Area Leader of AFRL/VAAC. 

IMPLEMENTATION AND RESULTS

Filter Construction 

If a typical component of the solution at point i is given 
by ,iφ then the filtered value iφ̂ satisfies:  

( )
=

−++− +=++
N

n
nini

n
ifiif

a

0
11 2

ˆˆˆ φφφαφφα (1)

where αf is a free parameter subject to the constraint that its 
absolute magnitude be less than .  Equation (1) is solved by 
the use of a standard tri-diagonal solver. The coefficients for 
the right hand side may be calculated using the values given 
in Table I.  While general boundaries may require the use of 
high-order biased stencils, in the absorbing boundary region 
one may simply step down the filter to second order as the 
edge of the domain is approached. 

Examples 

The one-dimensional pulse is a good example to 
demonstrate the effect of the grid stretching and filters. The 
pulse is defined as a simple Gaussian. 

==

==
−

−

2

2

50

50

)0,(

)0,(
x

y

x
z

etxH

etxE
  (2)

TABLE I. COEFFICIENTS FOR INTERIOR FILTERS

  Scheme   
Coef. F2 F4 F6 F8 

a0
2
21 fα+

8
65 fα+

16
1011 fα+

128
7093 fα+

a1
2
21 fα+

2
21 fα+

32
3415 fα+

16
187 fα+

a2 0
8
21 fα+−

16
63 fα+−

32
147 fα+−

a3 0 0
32
21 fα−

16
21 fα−

a4 0 0 0 
128

21 fα+−
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The scheme in this case utilized a 4th-order explicit centered 
scheme in space and a standard 4th-order Runge-Kutta in 
time.  The time-step was set equal to the smallest spatial step.  
At x=2, the grid was stretched geometrically with a factor of 
1.3.  A sixth order filter was used and the outer boundary 
condition at the end of the absorbing region (buffer zone) was 
a simple, 1st-order characteristic.   

Fig. 1 demonstrates quite clearly that without the filter, 
the abrupt jump in the metrics will lead to a spurious high-
frequency reflected wave.  With the filter however (Fig. 2), 
the wave maintains its shape until entering the buffer zone 
where it is quickly damped. 

A more complicated case is shown for a pulse reflecting 
off a perfectly magnetic conducting cylinder.  This case used 
6th-order compact-differencing with 8th-order filters.  Fig. 3 
shows that the pulse retains its qualities in the region of 
interest while the solution is damped in the absorbing region.   

CONCLUSIONS

By using mesh stretching and sharp filters, a simple 
absorbing zone can be created without polluting the content 
in the region of interest.  The boundary condition is effective 
even when the outgoing waves are not normal to the 
boundary itself.  Thus, through energy transfer into high-
frequency odd-even modes and the annihilation of those 
modes through the use of a filter, a simple yet highly 
effective absorbing boundary region may be implemented.   

Fig. 1.  Propagation of Gaussian Pulse from constant spacing onto 
a geometrically stretched mesh without the use of a filter.  

Fig. 2.  Propagation of Gaussian Pulse from constant spacing onto 
a geometrically stretched mesh using an implicit filter.  

Fig. 3.  EM Pulse scattering by a circular cylinder. 
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